L(s) = 1 | + 0.456i·2-s + (−1.39 − 2.41i)3-s + 1.79·4-s + (0.395 − 0.228i)5-s + (1.10 − 0.637i)6-s + 1.73i·8-s + (−2.39 + 4.14i)9-s + (0.104 + 0.180i)10-s + (3.39 − 1.96i)11-s + (−2.5 − 4.33i)12-s + (3.5 − 0.866i)13-s + (−1.10 − 0.637i)15-s + 2.79·16-s + 3·17-s + (−1.89 − 1.09i)18-s + (−1.18 − 0.685i)19-s + ⋯ |
L(s) = 1 | + 0.323i·2-s + (−0.805 − 1.39i)3-s + 0.895·4-s + (0.176 − 0.102i)5-s + (0.450 − 0.260i)6-s + 0.612i·8-s + (−0.798 + 1.38i)9-s + (0.0330 + 0.0571i)10-s + (1.02 − 0.591i)11-s + (−0.721 − 1.25i)12-s + (0.970 − 0.240i)13-s + (−0.285 − 0.164i)15-s + 0.697·16-s + 0.727·17-s + (−0.446 − 0.257i)18-s + (−0.272 − 0.157i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.372+0.927i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.372+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.372+0.927i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(459,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.372+0.927i)
|
Particular Values
L(1) |
≈ |
1.29389−0.874471i |
L(21) |
≈ |
1.29389−0.874471i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.5+0.866i)T |
good | 2 | 1−0.456iT−2T2 |
| 3 | 1+(1.39+2.41i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.395+0.228i)T+(2.5−4.33i)T2 |
| 11 | 1+(−3.39+1.96i)T+(5.5−9.52i)T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+(1.18+0.685i)T+(9.5+16.4i)T2 |
| 23 | 1+1.58T+23T2 |
| 29 | 1+(−3.39+5.88i)T+(−14.5−25.1i)T2 |
| 31 | 1+(7.5+4.33i)T+(15.5+26.8i)T2 |
| 37 | 1+6.92iT−37T2 |
| 41 | 1+(−6.79−3.92i)T+(20.5+35.5i)T2 |
| 43 | 1+(4.68+8.11i)T+(−21.5+37.2i)T2 |
| 47 | 1+(8.29−4.78i)T+(23.5−40.7i)T2 |
| 53 | 1+(3.08−5.33i)T+(−26.5−45.8i)T2 |
| 59 | 1−12.3iT−59T2 |
| 61 | 1+(−7.37+12.7i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.87+2.23i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3.79+2.18i)T+(35.5−61.4i)T2 |
| 73 | 1+(−3−1.73i)T+(36.5+63.2i)T2 |
| 79 | 1+(−3−5.19i)T+(−39.5+68.4i)T2 |
| 83 | 1+7.02iT−83T2 |
| 89 | 1−16.1iT−89T2 |
| 97 | 1+(6.31−3.64i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93255889481806058243812868331, −9.501379518986480841069363609490, −8.258185678958339729471424206629, −7.60432479327146753986803404896, −6.70849290467544021938648239693, −6.02754290170039811582021070218, −5.58091600014260064667609010277, −3.65128888613961709687098563126, −2.08721821007536886643836102810, −1.06001833414365627601565033938,
1.56922570399140501144258352674, 3.33473671278930713498370274384, 4.06722926122427706905716311439, 5.23009486497388365542472260837, 6.23294361841214697552853423746, 6.82152337185676039283662164618, 8.299408809323139093153817896978, 9.452764038797859625091863957229, 10.06306393533723756994617105063, 10.72434972235414617573360021568