| L(s) = 1 | + (−1.5 + 0.866i)2-s + 3-s + (0.5 − 0.866i)4-s + (1.5 + 0.866i)5-s + (−1.5 + 0.866i)6-s − 1.73i·8-s − 2·9-s − 3·10-s − 5.19i·11-s + (0.5 − 0.866i)12-s + (1 − 3.46i)13-s + (1.5 + 0.866i)15-s + (2.49 + 4.33i)16-s + (3 − 5.19i)17-s + (3 − 1.73i)18-s − 1.73i·19-s + ⋯ |
| L(s) = 1 | + (−1.06 + 0.612i)2-s + 0.577·3-s + (0.250 − 0.433i)4-s + (0.670 + 0.387i)5-s + (−0.612 + 0.353i)6-s − 0.612i·8-s − 0.666·9-s − 0.948·10-s − 1.56i·11-s + (0.144 − 0.250i)12-s + (0.277 − 0.960i)13-s + (0.387 + 0.223i)15-s + (0.624 + 1.08i)16-s + (0.727 − 1.26i)17-s + (0.707 − 0.408i)18-s − 0.397i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.384i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 + 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.936416 - 0.187366i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.936416 - 0.187366i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
| good | 2 | \( 1 + (1.5 - 0.866i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 - T + 3T^{2} \) |
| 5 | \( 1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 5.19iT - 11T^{2} \) |
| 17 | \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 1.73iT - 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 - 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.5 - 4.33i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 - 1.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 - 8.66iT - 67T^{2} \) |
| 71 | \( 1 + (-1.5 + 0.866i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.5 + 4.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.5 + 4.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.46iT - 83T^{2} \) |
| 89 | \( 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.5 + 2.59i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32047630075020485040049107394, −9.325956418422110678002870577232, −8.796033487749241537021023395254, −8.042982939212086687303114056667, −7.27840674149287705930315240607, −6.11154653709719775935433643482, −5.50079942395521476887978407787, −3.51741954053204866270502564434, −2.73516923260360768465383576781, −0.70586799034918320325363066594,
1.62158487891665727214313765225, 2.23886399269075425055084671501, 3.80894551261859145822128750566, 5.15732904004356608295242730285, 6.15306792176433334455836663977, 7.53737002805107178408428701174, 8.290159621570098065336256311891, 9.153498610713197598951502863832, 9.629752016250532487112023106325, 10.30811102765878725475248472929