L(s) = 1 | + (0.395 − 0.228i)2-s + 2.79·3-s + (−0.895 + 1.55i)4-s + (−0.395 − 0.228i)5-s + (1.10 − 0.637i)6-s + 1.73i·8-s + 4.79·9-s − 0.208·10-s + 3.92i·11-s + (−2.5 + 4.33i)12-s + (3.5 − 0.866i)13-s + (−1.10 − 0.637i)15-s + (−1.39 − 2.41i)16-s + (−1.5 + 2.59i)17-s + (1.89 − 1.09i)18-s + 1.37i·19-s + ⋯ |
L(s) = 1 | + (0.279 − 0.161i)2-s + 1.61·3-s + (−0.447 + 0.775i)4-s + (−0.176 − 0.102i)5-s + (0.450 − 0.260i)6-s + 0.612i·8-s + 1.59·9-s − 0.0660·10-s + 1.18i·11-s + (−0.721 + 1.24i)12-s + (0.970 − 0.240i)13-s + (−0.285 − 0.164i)15-s + (−0.348 − 0.604i)16-s + (−0.363 + 0.630i)17-s + (0.446 − 0.257i)18-s + 0.314i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.606i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.44785 + 0.827847i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.44785 + 0.827847i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.395 + 0.228i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 2.79T + 3T^{2} \) |
| 5 | \( 1 + (0.395 + 0.228i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 - 3.92iT - 11T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 1.37iT - 19T^{2} \) |
| 23 | \( 1 + (-0.791 - 1.37i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.39 + 5.88i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-7.5 + 4.33i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (6 - 3.46i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.79 - 3.92i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.68 + 8.11i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.29 - 4.78i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.08 + 5.33i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (10.6 + 6.15i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 14.7T + 61T^{2} \) |
| 67 | \( 1 - 4.47iT - 67T^{2} \) |
| 71 | \( 1 + (-3.79 + 2.18i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3 - 1.73i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 + 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.02iT - 83T^{2} \) |
| 89 | \( 1 + (-13.9 + 8.07i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.31 - 3.64i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45246379883673213094459194427, −9.574347955672022408075295844068, −8.793526369833645044563456202042, −8.059837860544257229439088438684, −7.65052726775847318673802253791, −6.31027458480504666287269709440, −4.57006767846061637399974969783, −3.99539365037331035321988627286, −3.01559399350518113244723723505, −1.98924295628334234159921066381,
1.28545071516219709894410587161, 2.89304293312412584816532785551, 3.72216751480771481919384553930, 4.77251483431949154101224655195, 6.01571060741293661110360917894, 6.97267993423042363951242290168, 8.081322575432016554647204163194, 9.025257781941353437691833399678, 9.107101040122626761058533221953, 10.44017461861765996665496738927