Properties

Label 2-637-91.23-c1-0-6
Degree $2$
Conductor $637$
Sign $-0.923 - 0.384i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27i·2-s + (−0.583 + 1.01i)3-s + 0.370·4-s + (−1.57 − 0.907i)5-s + (−1.29 − 0.745i)6-s + 3.02i·8-s + (0.817 + 1.41i)9-s + (1.15 − 2.00i)10-s + (2.40 + 1.38i)11-s + (−0.216 + 0.374i)12-s + (3.58 + 0.402i)13-s + (1.83 − 1.05i)15-s − 3.12·16-s + 2.74·17-s + (−1.80 + 1.04i)18-s + (−5.08 + 2.93i)19-s + ⋯
L(s)  = 1  + 0.902i·2-s + (−0.337 + 0.583i)3-s + 0.185·4-s + (−0.702 − 0.405i)5-s + (−0.527 − 0.304i)6-s + 1.06i·8-s + (0.272 + 0.472i)9-s + (0.366 − 0.634i)10-s + (0.725 + 0.418i)11-s + (−0.0624 + 0.108i)12-s + (0.993 + 0.111i)13-s + (0.473 − 0.273i)15-s − 0.780·16-s + 0.665·17-s + (−0.426 + 0.246i)18-s + (−1.16 + 0.673i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.384i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.923 - 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.923 - 0.384i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (569, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.923 - 0.384i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.252077 + 1.26071i\)
\(L(\frac12)\) \(\approx\) \(0.252077 + 1.26071i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-3.58 - 0.402i)T \)
good2 \( 1 - 1.27iT - 2T^{2} \)
3 \( 1 + (0.583 - 1.01i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (1.57 + 0.907i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (-2.40 - 1.38i)T + (5.5 + 9.52i)T^{2} \)
17 \( 1 - 2.74T + 17T^{2} \)
19 \( 1 + (5.08 - 2.93i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + 6.99T + 23T^{2} \)
29 \( 1 + (-1.75 - 3.04i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (1.79 - 1.03i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 - 1.74iT - 37T^{2} \)
41 \( 1 + (5.51 - 3.18i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.55 + 7.88i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-5.76 - 3.32i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.24 - 9.08i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 - 3.07iT - 59T^{2} \)
61 \( 1 + (-0.540 - 0.936i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4.34 + 2.50i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-2.35 - 1.35i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-6.64 + 3.83i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-7.86 + 13.6i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 7.97iT - 83T^{2} \)
89 \( 1 - 16.0iT - 89T^{2} \)
97 \( 1 + (-12.3 - 7.11i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80559714721814563923901429153, −10.27205735268847772830881384449, −8.963858678057750085071769265745, −8.174654111036473461785807778020, −7.50646935550833828931689104014, −6.39596787488319186585940143294, −5.68410459753261740800968538790, −4.52590097769786824750339231136, −3.81329651604730884510982313762, −1.85373254220572528227519880723, 0.74654564890158799532617812296, 2.04473576669002256554009186420, 3.55191741944683488981942877706, 4.00328618217459018221643632827, 5.98413851103102059266273010787, 6.57351112823867322724584107200, 7.43665299025909111235885632273, 8.462333976981500583302919441003, 9.571165301691853602903909469256, 10.46825590203539907769822152079

Graph of the $Z$-function along the critical line