L(s) = 1 | + 2.18i·2-s + (−0.895 + 1.55i)3-s − 2.79·4-s + (1.89 + 1.09i)5-s + (−3.39 − 1.96i)6-s − 1.73i·8-s + (−0.104 − 0.180i)9-s + (−2.39 + 4.14i)10-s + (1.10 + 0.637i)11-s + (2.49 − 4.33i)12-s + (−3.5 − 0.866i)13-s + (−3.39 + 1.96i)15-s − 1.79·16-s − 3·17-s + (0.395 − 0.228i)18-s + (−5.68 + 3.28i)19-s + ⋯ |
L(s) = 1 | + 1.54i·2-s + (−0.517 + 0.895i)3-s − 1.39·4-s + (0.847 + 0.489i)5-s + (−1.38 − 0.800i)6-s − 0.612i·8-s + (−0.0347 − 0.0602i)9-s + (−0.757 + 1.31i)10-s + (0.332 + 0.192i)11-s + (0.721 − 1.24i)12-s + (−0.970 − 0.240i)13-s + (−0.876 + 0.506i)15-s − 0.447·16-s − 0.727·17-s + (0.0932 − 0.0538i)18-s + (−1.30 + 0.753i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.372 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.372 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.615027 - 0.910014i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.615027 - 0.910014i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 2 | \( 1 - 2.18iT - 2T^{2} \) |
| 3 | \( 1 + (0.895 - 1.55i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.89 - 1.09i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.10 - 0.637i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + (5.68 - 3.28i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 7.58T + 23T^{2} \) |
| 29 | \( 1 + (-1.10 - 1.91i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-7.5 + 4.33i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.92iT - 37T^{2} \) |
| 41 | \( 1 + (2.20 - 1.27i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.18 + 3.78i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.70 - 2.14i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.08 - 10.5i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 8.85iT - 59T^{2} \) |
| 61 | \( 1 + (-6.37 - 11.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (9.87 + 5.70i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.791 + 0.456i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3 - 1.73i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 + 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.55iT - 83T^{2} \) |
| 89 | \( 1 - 2.91iT - 89T^{2} \) |
| 97 | \( 1 + (-13.1 - 7.61i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79962877993932160195884515155, −10.19885787751744967158820105754, −9.390542324136951992824605773174, −8.514282798949624798695065891553, −7.41797706601794476924588567162, −6.56139384277718308642843366832, −5.91958148762236628856279437785, −4.94130153665576688602015884051, −4.32948954678276299851584239643, −2.43295887203806432238362271193,
0.63068482637995740321499257054, 1.78838542180004913324572604439, 2.65797190259664534910305746339, 4.22720016079006004795848593384, 5.16368294417713953081998970209, 6.45740792489184069708560120282, 7.07829446431214611821892572457, 8.732203680607250584980981532085, 9.268551201465490186357175743835, 10.15930624084380098654332368821