L(s) = 1 | + 2.18i·2-s + (0.895 − 1.55i)3-s − 2.79·4-s + (−1.89 − 1.09i)5-s + (3.39 + 1.96i)6-s − 1.73i·8-s + (−0.104 − 0.180i)9-s + (2.39 − 4.14i)10-s + (1.10 + 0.637i)11-s + (−2.49 + 4.33i)12-s + (3.5 + 0.866i)13-s + (−3.39 + 1.96i)15-s − 1.79·16-s + 3·17-s + (0.395 − 0.228i)18-s + (5.68 − 3.28i)19-s + ⋯ |
L(s) = 1 | + 1.54i·2-s + (0.517 − 0.895i)3-s − 1.39·4-s + (−0.847 − 0.489i)5-s + (1.38 + 0.800i)6-s − 0.612i·8-s + (−0.0347 − 0.0602i)9-s + (0.757 − 1.31i)10-s + (0.332 + 0.192i)11-s + (−0.721 + 1.24i)12-s + (0.970 + 0.240i)13-s + (−0.876 + 0.506i)15-s − 0.447·16-s + 0.727·17-s + (0.0932 − 0.0538i)18-s + (1.30 − 0.753i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.372−0.927i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.372−0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.372−0.927i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.372−0.927i)
|
Particular Values
L(1) |
≈ |
1.33406+0.901622i |
L(21) |
≈ |
1.33406+0.901622i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.5−0.866i)T |
good | 2 | 1−2.18iT−2T2 |
| 3 | 1+(−0.895+1.55i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.89+1.09i)T+(2.5+4.33i)T2 |
| 11 | 1+(−1.10−0.637i)T+(5.5+9.52i)T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+(−5.68+3.28i)T+(9.5−16.4i)T2 |
| 23 | 1−7.58T+23T2 |
| 29 | 1+(−1.10−1.91i)T+(−14.5+25.1i)T2 |
| 31 | 1+(7.5−4.33i)T+(15.5−26.8i)T2 |
| 37 | 1−6.92iT−37T2 |
| 41 | 1+(−2.20+1.27i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.18+3.78i)T+(−21.5−37.2i)T2 |
| 47 | 1+(3.70+2.14i)T+(23.5+40.7i)T2 |
| 53 | 1+(−6.08−10.5i)T+(−26.5+45.8i)T2 |
| 59 | 1−8.85iT−59T2 |
| 61 | 1+(6.37+11.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(9.87+5.70i)T+(33.5+58.0i)T2 |
| 71 | 1+(0.791+0.456i)T+(35.5+61.4i)T2 |
| 73 | 1+(−3+1.73i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3+5.19i)T+(−39.5−68.4i)T2 |
| 83 | 1+3.55iT−83T2 |
| 89 | 1+2.91iT−89T2 |
| 97 | 1+(13.1+7.61i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79526417684735664833950029497, −9.159331419569469170663478863689, −8.735078549943441784494869676900, −7.81721471721968327102241989906, −7.31145815459036313551312016574, −6.64517179320774365373490598418, −5.42908137548725399376775896928, −4.56578541770108484399372854762, −3.19851392988863822957567174270, −1.22207996422282042602728488688,
1.14960984070049545214224612595, 2.97442661593573578698350622305, 3.56650979106340368876028914644, 4.10882791166648357287218098820, 5.49956221424824451192111860178, 7.04585765583933580504961077853, 8.105569118275456025999076142019, 9.192701300471768681622905416372, 9.616816874499505150984702890608, 10.61076657448359154929199690277