L(s) = 1 | − 2.38·2-s + (−1.37 + 2.38i)3-s + 3.70·4-s + (0.491 − 0.850i)5-s + (3.28 − 5.69i)6-s − 4.06·8-s + (−2.28 − 3.95i)9-s + (−1.17 + 2.03i)10-s + (0.293 − 0.509i)11-s + (−5.09 + 8.82i)12-s + (−2.39 + 2.69i)13-s + (1.35 + 2.34i)15-s + 2.30·16-s + 6.45·17-s + (5.45 + 9.45i)18-s + (−1.91 − 3.31i)19-s + ⋯ |
L(s) = 1 | − 1.68·2-s + (−0.794 + 1.37i)3-s + 1.85·4-s + (0.219 − 0.380i)5-s + (1.34 − 2.32i)6-s − 1.43·8-s + (−0.761 − 1.31i)9-s + (−0.370 + 0.642i)10-s + (0.0886 − 0.153i)11-s + (−1.47 + 2.54i)12-s + (−0.663 + 0.748i)13-s + (0.348 + 0.604i)15-s + 0.576·16-s + 1.56·17-s + (1.28 + 2.22i)18-s + (−0.438 − 0.760i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.236339 + 0.382203i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.236339 + 0.382203i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.39 - 2.69i)T \) |
good | 2 | \( 1 + 2.38T + 2T^{2} \) |
| 3 | \( 1 + (1.37 - 2.38i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.491 + 0.850i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.293 + 0.509i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 6.45T + 17T^{2} \) |
| 19 | \( 1 + (1.91 + 3.31i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 8.26T + 23T^{2} \) |
| 29 | \( 1 + (-1.98 - 3.42i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.49 + 2.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.75T + 37T^{2} \) |
| 41 | \( 1 + (-1.83 - 3.17i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.19 - 5.52i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.17 - 3.75i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.212 + 0.368i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 6.00T + 59T^{2} \) |
| 61 | \( 1 + (-1.10 - 1.91i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.50 - 6.07i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.80 - 3.11i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.46 - 4.27i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.39 - 2.41i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 2.86T + 83T^{2} \) |
| 89 | \( 1 - 2.09T + 89T^{2} \) |
| 97 | \( 1 + (-3.84 + 6.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70088526121553460678397398932, −9.744741104598919442297633200152, −9.404901114621574191550601537788, −8.691109192798054706003010870064, −7.50444130050188588347225510034, −6.57375014664706111164782828600, −5.37511774993004170745678955478, −4.56893948519993417608427761921, −3.00386571948342543341490619828, −1.13233025484344767286346958763,
0.57832258904084789940288647068, 1.66812778624682861465806820869, 2.87563965479997819645837348140, 5.26826412248891716297775080852, 6.26992335167983122880050226015, 7.02185861002321662716328443441, 7.66417064301226906472507306355, 8.313650180022205195460836120606, 9.485694219361260173286374479438, 10.39018230015637958657774647299