Properties

Label 2-637-91.16-c1-0-37
Degree $2$
Conductor $637$
Sign $-0.150 + 0.988i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + (0.707 − 1.22i)3-s − 4-s + (2.04 − 3.54i)5-s + (0.707 − 1.22i)6-s − 3·8-s + (0.500 + 0.866i)9-s + (2.04 − 3.54i)10-s + (1.89 − 3.28i)11-s + (−0.707 + 1.22i)12-s + (0.634 + 3.54i)13-s + (−2.89 − 5.01i)15-s − 16-s + 1.26·17-s + (0.500 + 0.866i)18-s + (−1.41 − 2.44i)19-s + ⋯
L(s)  = 1  + 0.707·2-s + (0.408 − 0.707i)3-s − 0.5·4-s + (0.916 − 1.58i)5-s + (0.288 − 0.499i)6-s − 1.06·8-s + (0.166 + 0.288i)9-s + (0.647 − 1.12i)10-s + (0.572 − 0.991i)11-s + (−0.204 + 0.353i)12-s + (0.176 + 0.984i)13-s + (−0.748 − 1.29i)15-s − 0.250·16-s + 0.307·17-s + (0.117 + 0.204i)18-s + (−0.324 − 0.561i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.150 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.150 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.150 + 0.988i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (471, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.150 + 0.988i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.50774 - 1.75451i\)
\(L(\frac12)\) \(\approx\) \(1.50774 - 1.75451i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-0.634 - 3.54i)T \)
good2 \( 1 - T + 2T^{2} \)
3 \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-2.04 + 3.54i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-1.89 + 3.28i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 - 1.26T + 17T^{2} \)
19 \( 1 + (1.41 + 2.44i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + 7.79T + 23T^{2} \)
29 \( 1 + (0.397 + 0.689i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (0.707 + 1.22i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 2.79T + 37T^{2} \)
41 \( 1 + (-1.48 - 2.57i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3.89 - 6.75i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-1.41 + 2.44i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-6.29 - 10.9i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 - 12.4T + 59T^{2} \)
61 \( 1 + (-4.17 - 7.22i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-1.89 + 3.28i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (6.29 + 10.8i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-1.10 + 1.90i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 9.89T + 83T^{2} \)
89 \( 1 - 14.9T + 89T^{2} \)
97 \( 1 + (2.12 - 3.67i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09677256769421484049266856797, −9.188353691690544488719688867250, −8.711878898684621741259535400770, −7.957187442760346795507823931267, −6.39657867040960746355440494519, −5.75591523060618035635753023824, −4.73740050865109934858410520267, −3.97754157432962080753699380487, −2.27731004662655525782284625794, −1.06033177312534432396940287417, 2.26018287278257359617212917489, 3.46156387207036421448766120085, 3.97650937219504191883003559191, 5.35549836660147707825883354497, 6.17964486071976838736349510736, 7.01219247005732377602147540802, 8.295262877842338453086732786552, 9.451578263986042712962960644513, 10.02640775791520888055423410703, 10.40430753264648144294814926925

Graph of the $Z$-function along the critical line