L(s) = 1 | − 0.851·2-s + (0.330 − 0.572i)3-s − 1.27·4-s + (1.72 − 2.98i)5-s + (−0.281 + 0.487i)6-s + 2.78·8-s + (1.28 + 2.21i)9-s + (−1.46 + 2.53i)10-s + (0.448 − 0.777i)11-s + (−0.421 + 0.730i)12-s + (3.07 − 1.88i)13-s + (−1.13 − 1.97i)15-s + 0.178·16-s − 1.93·17-s + (−1.09 − 1.88i)18-s + (0.519 + 0.898i)19-s + ⋯ |
L(s) = 1 | − 0.601·2-s + (0.190 − 0.330i)3-s − 0.637·4-s + (0.769 − 1.33i)5-s + (−0.114 + 0.198i)6-s + 0.985·8-s + (0.427 + 0.739i)9-s + (−0.463 + 0.802i)10-s + (0.135 − 0.234i)11-s + (−0.121 + 0.210i)12-s + (0.852 − 0.522i)13-s + (−0.293 − 0.508i)15-s + 0.0445·16-s − 0.469·17-s + (−0.257 − 0.445i)18-s + (0.119 + 0.206i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.166 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.166 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.904634 - 0.764791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.904634 - 0.764791i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.07 + 1.88i)T \) |
good | 2 | \( 1 + 0.851T + 2T^{2} \) |
| 3 | \( 1 + (-0.330 + 0.572i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.72 + 2.98i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.448 + 0.777i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 1.93T + 17T^{2} \) |
| 19 | \( 1 + (-0.519 - 0.898i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 + (-0.917 - 1.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.56 + 7.91i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 + (2.66 + 4.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.95 + 3.39i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.59 + 6.22i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.69 - 8.12i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 0.510T + 59T^{2} \) |
| 61 | \( 1 + (-0.718 - 1.24i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.22 + 7.31i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.72 + 2.98i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.45 - 9.44i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.04 + 10.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.51T + 83T^{2} \) |
| 89 | \( 1 + 13.6T + 89T^{2} \) |
| 97 | \( 1 + (-0.253 + 0.438i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26737161043478935141636779891, −9.204998993445784675646312369508, −8.788814432702224692554373137207, −8.085155620005702383443219403943, −7.07117368700537698717166491518, −5.59334580589867659421277680375, −5.01518241463518524145707078929, −3.88484061209091821009391862634, −1.93368373237992002653196236689, −0.909927814578637257170161400004,
1.51937051905495275059087021785, 3.10619359074108145553187176376, 4.07358974714031921791306053081, 5.30402111036723151016176378391, 6.68864809758227853995763730153, 6.99382723737369143806228873288, 8.474659867669004016035566575084, 9.197173798791232629151121547467, 9.799584181759390403597692670364, 10.60390111271304028177369479272