L(s) = 1 | − 0.268·2-s + (−0.571 + 0.989i)3-s − 1.92·4-s + (−1.28 + 2.21i)5-s + (0.153 − 0.265i)6-s + 1.05·8-s + (0.846 + 1.46i)9-s + (0.343 − 0.594i)10-s + (−1.97 + 3.41i)11-s + (1.10 − 1.90i)12-s + (3.15 + 1.74i)13-s + (−1.46 − 2.53i)15-s + 3.57·16-s − 0.785·17-s + (−0.227 − 0.393i)18-s + (−3.74 − 6.49i)19-s + ⋯ |
L(s) = 1 | − 0.189·2-s + (−0.329 + 0.571i)3-s − 0.964·4-s + (−0.572 + 0.992i)5-s + (0.0625 − 0.108i)6-s + 0.372·8-s + (0.282 + 0.488i)9-s + (0.108 − 0.188i)10-s + (−0.594 + 1.03i)11-s + (0.318 − 0.550i)12-s + (0.874 + 0.484i)13-s + (−0.378 − 0.654i)15-s + 0.893·16-s − 0.190·17-s + (−0.0535 − 0.0926i)18-s + (−0.859 − 1.48i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.775 + 0.630i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.775 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0978010 - 0.275314i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0978010 - 0.275314i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.15 - 1.74i)T \) |
good | 2 | \( 1 + 0.268T + 2T^{2} \) |
| 3 | \( 1 + (0.571 - 0.989i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.28 - 2.21i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.97 - 3.41i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 0.785T + 17T^{2} \) |
| 19 | \( 1 + (3.74 + 6.49i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 7.95T + 23T^{2} \) |
| 29 | \( 1 + (1.17 + 2.03i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.27 + 2.21i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.75T + 37T^{2} \) |
| 41 | \( 1 + (1.21 + 2.11i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.12 + 1.94i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.658 + 1.14i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.63 + 8.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.96T + 59T^{2} \) |
| 61 | \( 1 + (-4.72 - 8.18i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.676 + 1.17i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.15 - 10.6i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.384 - 0.665i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.09 - 5.36i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.07T + 83T^{2} \) |
| 89 | \( 1 + 7.66T + 89T^{2} \) |
| 97 | \( 1 + (1.18 - 2.05i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95433698856714718376441868143, −10.22056400633139114828714574692, −9.598381172149713698328170512157, −8.499626959239745037282361888595, −7.65788722580451563031362068630, −6.78831902089783715995442368013, −5.51791292988569004383339090827, −4.39388880766029582957315598823, −3.96147616445803868709991449182, −2.28492842216554993704442385648,
0.19818429921661631477491650500, 1.34070592054714039825533346688, 3.61122334371031476969491097437, 4.32190628961618544281521080064, 5.61032337731391614556864928603, 6.20634531571228856546025689675, 7.906533019879858450314915470685, 8.164639478978027026586624355034, 8.981496495401771434482129655052, 10.00272051415152281057853512270