L(s) = 1 | + (−1.17 − 2.02i)2-s + (−0.573 + 0.992i)3-s + (−1.74 + 3.02i)4-s + (−0.671 − 1.16i)5-s + 2.68·6-s + 3.48·8-s + (0.842 + 1.45i)9-s + (−1.57 + 2.72i)10-s + (−0.573 + 0.992i)11-s + (−2 − 3.46i)12-s − 13-s + 1.53·15-s + (−0.598 − 1.03i)16-s + (2.91 − 5.05i)17-s + (1.97 − 3.42i)18-s + (−1.67 − 2.89i)19-s + ⋯ |
L(s) = 1 | + (−0.828 − 1.43i)2-s + (−0.330 + 0.573i)3-s + (−0.872 + 1.51i)4-s + (−0.300 − 0.520i)5-s + 1.09·6-s + 1.23·8-s + (0.280 + 0.486i)9-s + (−0.497 + 0.861i)10-s + (−0.172 + 0.299i)11-s + (−0.577 − 0.999i)12-s − 0.277·13-s + 0.397·15-s + (−0.149 − 0.259i)16-s + (0.707 − 1.22i)17-s + (0.465 − 0.806i)18-s + (−0.383 − 0.664i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.244836 - 0.584218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.244836 - 0.584218i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (1.17 + 2.02i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.573 - 0.992i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.671 + 1.16i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.573 - 0.992i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.91 + 5.05i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.67 + 2.89i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.58 - 2.74i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 10.4T + 29T^{2} \) |
| 31 | \( 1 + (-0.817 + 1.41i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.25 + 7.37i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.292T + 41T^{2} \) |
| 43 | \( 1 + 8.15T + 43T^{2} \) |
| 47 | \( 1 + (5.30 + 9.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.391 + 0.677i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.32 + 10.9i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 + 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.05 + 5.28i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.53T + 71T^{2} \) |
| 73 | \( 1 + (7.65 - 13.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.441 + 0.764i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12.1T + 83T^{2} \) |
| 89 | \( 1 + (-2.86 - 4.96i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12972442396120312253546962044, −9.793496979047413818607577280001, −8.788872299741759033649580021559, −8.046506964060252610511468017143, −6.95866467109799522294907380591, −5.18039264175491817948144228020, −4.53804492631684499752186101669, −3.30609991253543062908775183409, −2.13434543047120394955402936252, −0.56694498645074791712338353965,
1.17963907157478417566298123936, 3.29570918993894927309806988445, 4.84146415692001326045193405397, 6.09359503305258686717106588979, 6.50371526121381927110675508856, 7.32767970424370337777756659244, 8.139074716891102147140924126146, 8.770754503813991018880245142019, 10.02078878661879746114151564182, 10.47173094350785399255824783372