Properties

Label 2-637-7.4-c1-0-11
Degree $2$
Conductor $637$
Sign $-0.900 - 0.435i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 2.11i)2-s + (0.333 − 0.578i)3-s + (−1.99 + 3.45i)4-s + (−0.455 − 0.788i)5-s + 1.63·6-s − 4.87·8-s + (1.27 + 2.21i)9-s + (1.11 − 1.92i)10-s + (−1.83 + 3.18i)11-s + (1.33 + 2.30i)12-s + 13-s − 0.607·15-s + (−1.97 − 3.42i)16-s + (−3.59 + 6.22i)17-s + (−3.12 + 5.41i)18-s + (0.989 + 1.71i)19-s + ⋯
L(s)  = 1  + (0.865 + 1.49i)2-s + (0.192 − 0.333i)3-s + (−0.997 + 1.72i)4-s + (−0.203 − 0.352i)5-s + 0.667·6-s − 1.72·8-s + (0.425 + 0.737i)9-s + (0.352 − 0.610i)10-s + (−0.554 + 0.960i)11-s + (0.384 + 0.666i)12-s + 0.277·13-s − 0.156·15-s + (−0.493 − 0.855i)16-s + (−0.871 + 1.50i)17-s + (−0.736 + 1.27i)18-s + (0.226 + 0.392i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.900 - 0.435i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (508, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.900 - 0.435i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.478176 + 2.08458i\)
\(L(\frac12)\) \(\approx\) \(0.478176 + 2.08458i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + (-1.22 - 2.11i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-0.333 + 0.578i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (0.455 + 0.788i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (1.83 - 3.18i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (3.59 - 6.22i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.989 - 1.71i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.298 - 0.516i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 3.64T + 29T^{2} \)
31 \( 1 + (-3.54 + 6.13i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (0.355 + 0.615i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 5.27T + 41T^{2} \)
43 \( 1 - 11.0T + 43T^{2} \)
47 \( 1 + (6.05 + 10.4i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.72 + 9.91i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (4.79 - 8.30i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (3.49 + 6.04i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (0.614 - 1.06i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 11.3T + 71T^{2} \)
73 \( 1 + (3.26 - 5.65i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-5.76 - 9.97i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 7.16T + 83T^{2} \)
89 \( 1 + (6.42 + 11.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 9.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.97190005761895829541595242678, −9.982016527578675106929996765347, −8.655197350739499023368567903055, −8.026084917981521573843772301304, −7.37885473308904339858733085077, −6.50359254536394360696330630464, −5.57364902169326114957576441868, −4.59098328407437423023924570829, −3.95796081167060601758589634014, −2.13477671766083700704479983465, 0.911221143111126059948230595038, 2.69861898932120978669218945956, 3.27526661618185708618707421708, 4.33329316621370691391763063256, 5.17547438041021622959405744268, 6.35411399190014041675806641152, 7.53111357967609151535754372159, 9.086838859231880776956249748600, 9.417606197898604867397568191891, 10.73063239336933365071981635093

Graph of the $Z$-function along the critical line