L(s) = 1 | + (1.22 + 2.11i)2-s + (0.333 − 0.578i)3-s + (−1.99 + 3.45i)4-s + (−0.455 − 0.788i)5-s + 1.63·6-s − 4.87·8-s + (1.27 + 2.21i)9-s + (1.11 − 1.92i)10-s + (−1.83 + 3.18i)11-s + (1.33 + 2.30i)12-s + 13-s − 0.607·15-s + (−1.97 − 3.42i)16-s + (−3.59 + 6.22i)17-s + (−3.12 + 5.41i)18-s + (0.989 + 1.71i)19-s + ⋯ |
L(s) = 1 | + (0.865 + 1.49i)2-s + (0.192 − 0.333i)3-s + (−0.997 + 1.72i)4-s + (−0.203 − 0.352i)5-s + 0.667·6-s − 1.72·8-s + (0.425 + 0.737i)9-s + (0.352 − 0.610i)10-s + (−0.554 + 0.960i)11-s + (0.384 + 0.666i)12-s + 0.277·13-s − 0.156·15-s + (−0.493 − 0.855i)16-s + (−0.871 + 1.50i)17-s + (−0.736 + 1.27i)18-s + (0.226 + 0.392i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.478176 + 2.08458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.478176 + 2.08458i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + (-1.22 - 2.11i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.333 + 0.578i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.455 + 0.788i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.83 - 3.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.59 - 6.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.989 - 1.71i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.298 - 0.516i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.64T + 29T^{2} \) |
| 31 | \( 1 + (-3.54 + 6.13i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.355 + 0.615i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.27T + 41T^{2} \) |
| 43 | \( 1 - 11.0T + 43T^{2} \) |
| 47 | \( 1 + (6.05 + 10.4i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.72 + 9.91i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.79 - 8.30i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.49 + 6.04i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.614 - 1.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 + (3.26 - 5.65i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.76 - 9.97i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.16T + 83T^{2} \) |
| 89 | \( 1 + (6.42 + 11.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.09T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97190005761895829541595242678, −9.982016527578675106929996765347, −8.655197350739499023368567903055, −8.026084917981521573843772301304, −7.37885473308904339858733085077, −6.50359254536394360696330630464, −5.57364902169326114957576441868, −4.59098328407437423023924570829, −3.95796081167060601758589634014, −2.13477671766083700704479983465,
0.911221143111126059948230595038, 2.69861898932120978669218945956, 3.27526661618185708618707421708, 4.33329316621370691391763063256, 5.17547438041021622959405744268, 6.35411399190014041675806641152, 7.53111357967609151535754372159, 9.086838859231880776956249748600, 9.417606197898604867397568191891, 10.73063239336933365071981635093