L(s) = 1 | + (0.605 − 1.04i)2-s + (−0.872 − 1.51i)3-s + (0.267 + 0.462i)4-s + (1.10 − 1.91i)5-s − 2.11·6-s + 3.06·8-s + (−0.0222 + 0.0384i)9-s + (−1.33 − 2.31i)10-s + (0.394 + 0.683i)11-s + (0.465 − 0.807i)12-s + 13-s − 3.85·15-s + (1.32 − 2.29i)16-s + (−0.872 − 1.51i)17-s + (0.0268 + 0.0465i)18-s + (2.16 − 3.74i)19-s + ⋯ |
L(s) = 1 | + (0.428 − 0.741i)2-s + (−0.503 − 0.872i)3-s + (0.133 + 0.231i)4-s + (0.494 − 0.856i)5-s − 0.862·6-s + 1.08·8-s + (−0.00740 + 0.0128i)9-s + (−0.423 − 0.733i)10-s + (0.118 + 0.206i)11-s + (0.134 − 0.232i)12-s + 0.277·13-s − 0.995·15-s + (0.330 − 0.573i)16-s + (−0.211 − 0.366i)17-s + (0.00633 + 0.0109i)18-s + (0.495 − 0.858i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.863513 - 1.74191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.863513 - 1.74191i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + (-0.605 + 1.04i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.872 + 1.51i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.10 + 1.91i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.394 - 0.683i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.872 + 1.51i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.16 + 3.74i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.556 + 0.963i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 8.48T + 29T^{2} \) |
| 31 | \( 1 + (-2.85 - 4.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.13 - 1.97i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 12.1T + 41T^{2} \) |
| 43 | \( 1 - 8.06T + 43T^{2} \) |
| 47 | \( 1 + (-4.37 + 7.57i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.97 + 6.88i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.47 - 9.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.53 - 11.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.27 + 5.67i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.85T + 71T^{2} \) |
| 73 | \( 1 + (-4.00 - 6.93i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.45 + 5.98i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.14T + 83T^{2} \) |
| 89 | \( 1 + (-1.69 + 2.93i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 0.0981T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52992147417757560736646658669, −9.450651876850462695559479060784, −8.604753431381280732732916535243, −7.38307217759669385539852075185, −6.81335297347388348175700438509, −5.56761446432212740741097057825, −4.70998185669572303304709404730, −3.47822152447108134984713502529, −2.08332049483295383558027868615, −1.08210350213104928818412929754,
1.91307008976626801927001923979, 3.58972026829573545022849499640, 4.61416621282429080495741762374, 5.67122503739849240914972191275, 6.09471675877314802475407713192, 7.12641492194455636591173565909, 7.997065527556914409427668269666, 9.483387305758148563871513835442, 10.10001724661199182003023669768, 10.90391527646709271476664276981