L(s) = 1 | + (−0.916 + 1.58i)2-s + (0.426 + 0.739i)3-s + (−0.678 − 1.17i)4-s + (1.31 − 2.27i)5-s − 1.56·6-s − 1.17·8-s + (1.13 − 1.96i)9-s + (2.40 + 4.16i)10-s + (−1.63 − 2.82i)11-s + (0.579 − 1.00i)12-s − 13-s + 2.24·15-s + (2.43 − 4.21i)16-s + (2.26 + 3.92i)17-s + (2.08 + 3.60i)18-s + (2.03 − 3.52i)19-s + ⋯ |
L(s) = 1 | + (−0.647 + 1.12i)2-s + (0.246 + 0.426i)3-s + (−0.339 − 0.587i)4-s + (0.587 − 1.01i)5-s − 0.638·6-s − 0.416·8-s + (0.378 − 0.655i)9-s + (0.760 + 1.31i)10-s + (−0.492 − 0.852i)11-s + (0.167 − 0.289i)12-s − 0.277·13-s + 0.578·15-s + (0.609 − 1.05i)16-s + (0.549 + 0.951i)17-s + (0.490 + 0.849i)18-s + (0.466 − 0.807i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17203 + 0.268849i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17203 + 0.268849i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (0.916 - 1.58i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.426 - 0.739i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.31 + 2.27i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.63 + 2.82i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.26 - 3.92i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.03 + 3.52i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.26 + 3.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.42T + 29T^{2} \) |
| 31 | \( 1 + (1.40 + 2.42i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.02 + 8.70i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.84T + 41T^{2} \) |
| 43 | \( 1 - 9.72T + 43T^{2} \) |
| 47 | \( 1 + (4.72 - 8.18i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.63 + 4.55i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.28 + 2.22i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.59 - 9.68i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.990 - 1.71i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 + (-6.06 - 10.5i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.95 - 10.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.2T + 83T^{2} \) |
| 89 | \( 1 + (-5.33 + 9.23i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 13.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24020704069409772822035908133, −9.283492069118808248861792691999, −9.013066516742311813397223385489, −8.120811592994831253168338391463, −7.24668520789886153936578504501, −6.08881936441545104525950119507, −5.50737238454143948951642487695, −4.31493449630865995151001180604, −2.91324824150051318588768221609, −0.852161085668645886143658224213,
1.51319465825121362186922412846, 2.46126647926004148100034601654, 3.21692710915125314386719427011, 4.92883400183845616359848286787, 6.12274012638774327137471561566, 7.27947256766699109440101455070, 7.80483606241743217806724968718, 9.173483399313699591245835113408, 9.957086895914491394901900584745, 10.32819669575053664021743006741