L(s) = 1 | + (−0.235 + 0.407i)2-s + (1.12 + 1.94i)3-s + (0.889 + 1.54i)4-s + (0.264 − 0.458i)5-s − 1.05·6-s − 1.77·8-s + (−1.02 + 1.78i)9-s + (0.124 + 0.215i)10-s + (1.12 + 1.94i)11-s + (−2 + 3.46i)12-s − 13-s + 1.19·15-s + (−1.35 + 2.35i)16-s + (−0.653 − 1.13i)17-s + (−0.484 − 0.839i)18-s + (−0.735 + 1.27i)19-s + ⋯ |
L(s) = 1 | + (−0.166 + 0.288i)2-s + (0.649 + 1.12i)3-s + (0.444 + 0.770i)4-s + (0.118 − 0.205i)5-s − 0.432·6-s − 0.628·8-s + (−0.343 + 0.594i)9-s + (0.0393 + 0.0682i)10-s + (0.339 + 0.587i)11-s + (−0.577 + 0.999i)12-s − 0.277·13-s + 0.307·15-s + (−0.339 + 0.588i)16-s + (−0.158 − 0.274i)17-s + (−0.114 − 0.197i)18-s + (−0.168 + 0.292i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.694550 + 1.65730i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.694550 + 1.65730i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (0.235 - 0.407i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.12 - 1.94i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.264 + 0.458i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.12 - 1.94i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.653 + 1.13i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.735 - 1.27i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.91 - 5.05i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.22T + 29T^{2} \) |
| 31 | \( 1 + (3.51 + 6.08i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.18 + 2.04i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.49T + 41T^{2} \) |
| 43 | \( 1 - 11.3T + 43T^{2} \) |
| 47 | \( 1 + (-4.29 + 7.43i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.63 + 9.76i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.08 + 10.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.96 - 13.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.19T + 71T^{2} \) |
| 73 | \( 1 + (-3.82 - 6.61i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.669 + 1.15i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 16.3T + 83T^{2} \) |
| 89 | \( 1 + (-3.45 + 5.98i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 3.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78444046618435980699977732218, −9.715484114102007685538192140072, −9.267135889733640635614787932156, −8.378355567937506824340497086470, −7.53082623204882011513217171530, −6.61123358252907738291252610109, −5.31206813958636241939650218628, −4.15657259153233308153630103206, −3.44331498491179379180998787756, −2.22097348516636377598838239691,
0.983812211928118496442745611831, 2.18656468621651464154888870987, 2.98731211646972824621625050261, 4.70573741139571697393734194802, 6.17372415647096101694066208888, 6.57539220263257344102685876599, 7.59340901745017376195070855378, 8.550283833383517438823399445424, 9.265363122736429375388088589710, 10.49726831870870203270142443153