L(s) = 1 | + (−1.57 − 1.96i)2-s + (2.34 − 1.13i)3-s + (−0.967 + 4.23i)4-s + (3.79 − 1.82i)5-s + (−5.91 − 2.84i)6-s + (0.107 + 2.64i)7-s + (5.32 − 2.56i)8-s + (2.35 − 2.95i)9-s + (−9.55 − 4.60i)10-s + (1.87 + 2.34i)11-s + (2.51 + 11.0i)12-s + (0.623 + 0.781i)13-s + (5.03 − 4.36i)14-s + (6.83 − 8.57i)15-s + (−5.59 − 2.69i)16-s + (−0.290 − 1.27i)17-s + ⋯ |
L(s) = 1 | + (−1.11 − 1.39i)2-s + (1.35 − 0.652i)3-s + (−0.483 + 2.11i)4-s + (1.69 − 0.816i)5-s + (−2.41 − 1.16i)6-s + (0.0407 + 0.999i)7-s + (1.88 − 0.907i)8-s + (0.786 − 0.985i)9-s + (−3.02 − 1.45i)10-s + (0.565 + 0.708i)11-s + (0.727 + 3.18i)12-s + (0.172 + 0.216i)13-s + (1.34 − 1.16i)14-s + (1.76 − 2.21i)15-s + (−1.39 − 0.673i)16-s + (−0.0705 − 0.309i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.446 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.907519 - 1.46791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.907519 - 1.46791i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.107 - 2.64i)T \) |
| 13 | \( 1 + (-0.623 - 0.781i)T \) |
good | 2 | \( 1 + (1.57 + 1.96i)T + (-0.445 + 1.94i)T^{2} \) |
| 3 | \( 1 + (-2.34 + 1.13i)T + (1.87 - 2.34i)T^{2} \) |
| 5 | \( 1 + (-3.79 + 1.82i)T + (3.11 - 3.90i)T^{2} \) |
| 11 | \( 1 + (-1.87 - 2.34i)T + (-2.44 + 10.7i)T^{2} \) |
| 17 | \( 1 + (0.290 + 1.27i)T + (-15.3 + 7.37i)T^{2} \) |
| 19 | \( 1 + 6.95T + 19T^{2} \) |
| 23 | \( 1 + (-0.0448 + 0.196i)T + (-20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (-0.542 - 2.37i)T + (-26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 + 0.570T + 31T^{2} \) |
| 37 | \( 1 + (2.37 + 10.4i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + (-4.77 + 2.29i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (-8.15 - 3.92i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (3.64 + 4.56i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.570 + 2.49i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (10.1 + 4.90i)T + (36.7 + 46.1i)T^{2} \) |
| 61 | \( 1 + (-1.72 - 7.56i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + 5.63T + 67T^{2} \) |
| 71 | \( 1 + (2.86 - 12.5i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (5.25 - 6.59i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + 16.3T + 79T^{2} \) |
| 83 | \( 1 + (2.67 - 3.34i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (-0.566 + 0.710i)T + (-19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 - 3.36T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.913997946184568984542272856421, −9.275298491580688555956748343577, −8.853356502228210151266811175288, −8.412475662139664525793005576625, −7.10369145719928097285525237757, −5.84552235733958140415043254363, −4.27228797258484144935308169443, −2.69305758394391637317078570639, −2.10916595783391859932835975643, −1.49515712852206187227883479240,
1.62430815125603729516706195216, 3.05785128940968974121536955884, 4.48139854667831817201652748001, 6.02864299916426041640721153616, 6.43143286352969548111127100754, 7.47716228859430888303884270445, 8.394954629627214780677430094285, 9.071991995028455913958705336272, 9.688661904223819045233177831592, 10.43030699452186515560066507691