L(s) = 1 | + (1.16 − 2.01i)2-s + (−1.15 + 1.99i)3-s + (−1.71 − 2.97i)4-s + 3.37·5-s + (2.69 + 4.66i)6-s − 3.34·8-s + (−1.16 − 2.01i)9-s + (3.92 − 6.80i)10-s + (−1.16 + 2.01i)11-s + 7.93·12-s + (0.408 − 3.58i)13-s + (−3.89 + 6.74i)15-s + (−0.466 + 0.808i)16-s + (2.72 + 4.72i)17-s − 5.43·18-s + (3.58 + 6.20i)19-s + ⋯ |
L(s) = 1 | + (0.824 − 1.42i)2-s + (−0.666 + 1.15i)3-s + (−0.858 − 1.48i)4-s + 1.50·5-s + (1.09 + 1.90i)6-s − 1.18·8-s + (−0.388 − 0.673i)9-s + (1.24 − 2.15i)10-s + (−0.351 + 0.608i)11-s + 2.29·12-s + (0.113 − 0.993i)13-s + (−1.00 + 1.74i)15-s + (−0.116 + 0.202i)16-s + (0.661 + 1.14i)17-s − 1.28·18-s + (0.822 + 1.42i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09620 - 1.01933i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09620 - 1.01933i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-0.408 + 3.58i)T \) |
good | 2 | \( 1 + (-1.16 + 2.01i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.15 - 1.99i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 3.37T + 5T^{2} \) |
| 11 | \( 1 + (1.16 - 2.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.72 - 4.72i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.58 - 6.20i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.22 + 5.58i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.22 + 7.31i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.05T + 31T^{2} \) |
| 37 | \( 1 + (1.52 - 2.64i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.468 + 0.812i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.04 - 3.54i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 + 2.34T + 53T^{2} \) |
| 59 | \( 1 + (3.62 + 6.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.19 + 5.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.30 - 3.99i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.79 - 6.57i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2.06T + 73T^{2} \) |
| 79 | \( 1 + 7.58T + 79T^{2} \) |
| 83 | \( 1 + 2.89T + 83T^{2} \) |
| 89 | \( 1 + (6.57 - 11.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.77 - 3.08i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39193177549276948630690102050, −10.02881473203841458105950706452, −9.569227284825654373202355974365, −8.042721997994948108429505932805, −6.12933594392751428547040942354, −5.52466898490866648135221072432, −4.85767353539839806071901066988, −3.82108781491715737917609565054, −2.71465563260493320135431246918, −1.47572498512007748167774136262,
1.39684944977077239307035708651, 3.03371630124749315740872860735, 4.94511416817988465295532594209, 5.49150699438762978378239730757, 6.17443488899378889804159123925, 7.10417673830165012319683845128, 7.29640587639758682251738853503, 8.825592048779301317447816808552, 9.507796158983861149597414380219, 10.92417432846741936171025278395