Properties

Label 2-637-13.9-c1-0-22
Degree 22
Conductor 637637
Sign 0.617+0.786i0.617 + 0.786i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.16 − 2.01i)2-s + (−1.15 + 1.99i)3-s + (−1.71 − 2.97i)4-s + 3.37·5-s + (2.69 + 4.66i)6-s − 3.34·8-s + (−1.16 − 2.01i)9-s + (3.92 − 6.80i)10-s + (−1.16 + 2.01i)11-s + 7.93·12-s + (0.408 − 3.58i)13-s + (−3.89 + 6.74i)15-s + (−0.466 + 0.808i)16-s + (2.72 + 4.72i)17-s − 5.43·18-s + (3.58 + 6.20i)19-s + ⋯
L(s)  = 1  + (0.824 − 1.42i)2-s + (−0.666 + 1.15i)3-s + (−0.858 − 1.48i)4-s + 1.50·5-s + (1.09 + 1.90i)6-s − 1.18·8-s + (−0.388 − 0.673i)9-s + (1.24 − 2.15i)10-s + (−0.351 + 0.608i)11-s + 2.29·12-s + (0.113 − 0.993i)13-s + (−1.00 + 1.74i)15-s + (−0.116 + 0.202i)16-s + (0.661 + 1.14i)17-s − 1.28·18-s + (0.822 + 1.42i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.617+0.786i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.617+0.786i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.617+0.786i0.617 + 0.786i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(295,)\chi_{637} (295, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.617+0.786i)(2,\ 637,\ (\ :1/2),\ 0.617 + 0.786i)

Particular Values

L(1)L(1) \approx 2.096201.01933i2.09620 - 1.01933i
L(12)L(\frac12) \approx 2.096201.01933i2.09620 - 1.01933i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(0.408+3.58i)T 1 + (-0.408 + 3.58i)T
good2 1+(1.16+2.01i)T+(11.73i)T2 1 + (-1.16 + 2.01i)T + (-1 - 1.73i)T^{2}
3 1+(1.151.99i)T+(1.52.59i)T2 1 + (1.15 - 1.99i)T + (-1.5 - 2.59i)T^{2}
5 13.37T+5T2 1 - 3.37T + 5T^{2}
11 1+(1.162.01i)T+(5.59.52i)T2 1 + (1.16 - 2.01i)T + (-5.5 - 9.52i)T^{2}
17 1+(2.724.72i)T+(8.5+14.7i)T2 1 + (-2.72 - 4.72i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.586.20i)T+(9.5+16.4i)T2 1 + (-3.58 - 6.20i)T + (-9.5 + 16.4i)T^{2}
23 1+(3.22+5.58i)T+(11.519.9i)T2 1 + (-3.22 + 5.58i)T + (-11.5 - 19.9i)T^{2}
29 1+(4.22+7.31i)T+(14.525.1i)T2 1 + (-4.22 + 7.31i)T + (-14.5 - 25.1i)T^{2}
31 1+3.05T+31T2 1 + 3.05T + 31T^{2}
37 1+(1.522.64i)T+(18.532.0i)T2 1 + (1.52 - 2.64i)T + (-18.5 - 32.0i)T^{2}
41 1+(0.468+0.812i)T+(20.535.5i)T2 1 + (-0.468 + 0.812i)T + (-20.5 - 35.5i)T^{2}
43 1+(2.043.54i)T+(21.5+37.2i)T2 1 + (-2.04 - 3.54i)T + (-21.5 + 37.2i)T^{2}
47 1+3.46T+47T2 1 + 3.46T + 47T^{2}
53 1+2.34T+53T2 1 + 2.34T + 53T^{2}
59 1+(3.62+6.27i)T+(29.5+51.0i)T2 1 + (3.62 + 6.27i)T + (-29.5 + 51.0i)T^{2}
61 1+(3.19+5.53i)T+(30.5+52.8i)T2 1 + (3.19 + 5.53i)T + (-30.5 + 52.8i)T^{2}
67 1+(2.303.99i)T+(33.558.0i)T2 1 + (2.30 - 3.99i)T + (-33.5 - 58.0i)T^{2}
71 1+(3.796.57i)T+(35.5+61.4i)T2 1 + (-3.79 - 6.57i)T + (-35.5 + 61.4i)T^{2}
73 1+2.06T+73T2 1 + 2.06T + 73T^{2}
79 1+7.58T+79T2 1 + 7.58T + 79T^{2}
83 1+2.89T+83T2 1 + 2.89T + 83T^{2}
89 1+(6.5711.3i)T+(44.577.0i)T2 1 + (6.57 - 11.3i)T + (-44.5 - 77.0i)T^{2}
97 1+(1.773.08i)T+(48.5+84.0i)T2 1 + (-1.77 - 3.08i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.39193177549276948630690102050, −10.02881473203841458105950706452, −9.569227284825654373202355974365, −8.042721997994948108429505932805, −6.12933594392751428547040942354, −5.52466898490866648135221072432, −4.85767353539839806071901066988, −3.82108781491715737917609565054, −2.71465563260493320135431246918, −1.47572498512007748167774136262, 1.39684944977077239307035708651, 3.03371630124749315740872860735, 4.94511416817988465295532594209, 5.49150699438762978378239730757, 6.17443488899378889804159123925, 7.10417673830165012319683845128, 7.29640587639758682251738853503, 8.825592048779301317447816808552, 9.507796158983861149597414380219, 10.92417432846741936171025278395

Graph of the ZZ-function along the critical line