L(s) = 1 | + (−1.21 + 2.10i)2-s + (−0.376 + 0.652i)3-s + (−1.95 − 3.39i)4-s + 0.341·5-s + (−0.916 − 1.58i)6-s + 4.65·8-s + (1.21 + 2.10i)9-s + (−0.415 + 0.719i)10-s + (1.21 − 2.10i)11-s + 2.95·12-s + (2.50 + 2.59i)13-s + (−0.128 + 0.222i)15-s + (−1.74 + 3.02i)16-s + (0.974 + 1.68i)17-s − 5.91·18-s + (3.14 + 5.44i)19-s + ⋯ |
L(s) = 1 | + (−0.859 + 1.48i)2-s + (−0.217 + 0.376i)3-s + (−0.978 − 1.69i)4-s + 0.152·5-s + (−0.374 − 0.647i)6-s + 1.64·8-s + (0.405 + 0.702i)9-s + (−0.131 + 0.227i)10-s + (0.366 − 0.635i)11-s + 0.851·12-s + (0.693 + 0.720i)13-s + (−0.0332 + 0.0575i)15-s + (−0.437 + 0.757i)16-s + (0.236 + 0.409i)17-s − 1.39·18-s + (0.721 + 1.24i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.999−0.0251i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.999−0.0251i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.999−0.0251i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.999−0.0251i)
|
Particular Values
L(1) |
≈ |
0.0102661+0.817542i |
L(21) |
≈ |
0.0102661+0.817542i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−2.50−2.59i)T |
good | 2 | 1+(1.21−2.10i)T+(−1−1.73i)T2 |
| 3 | 1+(0.376−0.652i)T+(−1.5−2.59i)T2 |
| 5 | 1−0.341T+5T2 |
| 11 | 1+(−1.21+2.10i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.974−1.68i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.14−5.44i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.84+3.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.22−3.84i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.97T+31T2 |
| 37 | 1+(−4.81+8.33i)T+(−18.5−32.0i)T2 |
| 41 | 1+(6.26−10.8i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.20−7.28i)T+(−21.5+37.2i)T2 |
| 47 | 1+9.00T+47T2 |
| 53 | 1−1.49T+53T2 |
| 59 | 1+(0.313+0.542i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.571−0.990i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.79+4.84i)T+(−33.5−58.0i)T2 |
| 71 | 1+(4.74+8.22i)T+(−35.5+61.4i)T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−1.41T+83T2 |
| 89 | 1+(6.22−10.7i)T+(−44.5−77.0i)T2 |
| 97 | 1+(5.13+8.90i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71340135218825846508186972471, −9.794143783776285042972786072993, −9.223482376379168575480517408679, −8.186273752422438405350178877444, −7.67504114297580053763741108412, −6.50675026437480524934834370217, −5.89582806615182201394609405300, −4.97158100281800306629645489461, −3.74731159138312938036909757254, −1.46984545366465835967030062283,
0.68533658273075388308636848416, 1.80515769542522829470395819796, 3.12516346707865008786577864964, 4.04034477824557599164036466264, 5.50841613685318383193933388313, 6.83605521799790520831705036074, 7.70159368046002348768788674314, 8.774109107701047404091499646453, 9.587215429734493864531662314111, 9.994076583383720241507836044818