L(s) = 1 | + (0.651 + 1.12i)2-s + (1.44 + 2.49i)3-s + (0.151 − 0.262i)4-s − 2.88·5-s + (−1.87 + 3.25i)6-s + 3·8-s + (−2.65 + 4.59i)9-s + (−1.87 − 3.25i)10-s + (2.95 + 5.11i)11-s + 0.872·12-s + (−3.31 + 1.41i)13-s + (−4.15 − 7.19i)15-s + (1.65 + 2.86i)16-s + (−0.436 + 0.755i)17-s − 6.90·18-s + (1.44 − 2.49i)19-s + ⋯ |
L(s) = 1 | + (0.460 + 0.797i)2-s + (0.831 + 1.44i)3-s + (0.0756 − 0.131i)4-s − 1.28·5-s + (−0.766 + 1.32i)6-s + 1.06·8-s + (−0.883 + 1.53i)9-s + (−0.593 − 1.02i)10-s + (0.890 + 1.54i)11-s + 0.251·12-s + (−0.920 + 0.391i)13-s + (−1.07 − 1.85i)15-s + (0.412 + 0.715i)16-s + (−0.105 + 0.183i)17-s − 1.62·18-s + (0.330 − 0.572i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.929−0.367i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.929−0.367i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.929−0.367i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.929−0.367i)
|
Particular Values
L(1) |
≈ |
0.396189+2.07871i |
L(21) |
≈ |
0.396189+2.07871i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.31−1.41i)T |
good | 2 | 1+(−0.651−1.12i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.44−2.49i)T+(−1.5+2.59i)T2 |
| 5 | 1+2.88T+5T2 |
| 11 | 1+(−2.95−5.11i)T+(−5.5+9.52i)T2 |
| 17 | 1+(0.436−0.755i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.44+2.49i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.30+5.72i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.651+1.12i)T+(−14.5+25.1i)T2 |
| 31 | 1+0.872T+31T2 |
| 37 | 1+(0.697+1.20i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−3.75−6.50i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.75−4.77i)T+(−21.5−37.2i)T2 |
| 47 | 1−12.3T+47T2 |
| 53 | 1−9.60T+53T2 |
| 59 | 1+(−3.31+5.74i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.88+4.99i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.5+0.866i)T+(−33.5+58.0i)T2 |
| 71 | 1+(2−3.46i)T+(−35.5−61.4i)T2 |
| 73 | 1−5.76T+73T2 |
| 79 | 1−0.605T+79T2 |
| 83 | 1−6.63T+83T2 |
| 89 | 1+(−4.32−7.48i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.88−6.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79250531383465555981853067102, −9.929789031761097156703981076889, −9.322566733233334626179026948645, −8.226819865358564604672378990780, −7.43362136098085192960933063189, −6.66788936447869144061971598997, −5.08539115899838524831019224322, −4.31366968624434947174578385894, −4.02865999138294273477824972901, −2.37829516638545847841447354908,
0.950068680988019740981576199563, 2.34319591011078898335992378749, 3.41924764994475015402629261393, 3.89277214277907347779548060582, 5.67644904227778997825071169216, 7.07475470467055880207413879501, 7.55100786847014753191941300454, 8.232448319669320290585132270173, 9.042544795781123294622184580775, 10.52862917633162207505304906989