L(s) = 1 | + (−1.15 − 1.99i)2-s + (−1.08 − 1.87i)3-s + (−1.65 + 2.86i)4-s + 2.16·5-s + (−2.49 + 4.32i)6-s + 2.99·8-s + (−0.848 + 1.46i)9-s + (−2.49 − 4.32i)10-s + (−2.45 − 4.25i)11-s + 7.15·12-s + (−1.41 − 3.31i)13-s + (−2.34 − 4.06i)15-s + (−0.151 − 0.262i)16-s + (−3.57 + 6.19i)17-s + 3.90·18-s + (−1.08 + 1.87i)19-s + ⋯ |
L(s) = 1 | + (−0.814 − 1.41i)2-s + (−0.625 − 1.08i)3-s + (−0.825 + 1.43i)4-s + 0.969·5-s + (−1.01 + 1.76i)6-s + 1.06·8-s + (−0.282 + 0.489i)9-s + (−0.789 − 1.36i)10-s + (−0.739 − 1.28i)11-s + 2.06·12-s + (−0.391 − 0.920i)13-s + (−0.606 − 1.05i)15-s + (−0.0378 − 0.0655i)16-s + (−0.868 + 1.50i)17-s + 0.921·18-s + (−0.248 + 0.430i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.367 - 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.367 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.269291 + 0.183073i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.269291 + 0.183073i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (1.41 + 3.31i)T \) |
good | 2 | \( 1 + (1.15 + 1.99i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.08 + 1.87i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.16T + 5T^{2} \) |
| 11 | \( 1 + (2.45 + 4.25i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.57 - 6.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.08 - 1.87i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.302 - 0.524i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 - 1.99i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.15T + 31T^{2} \) |
| 37 | \( 1 + (4.30 + 7.45i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.99 - 8.64i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.25 + 10.8i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.51T + 47T^{2} \) |
| 53 | \( 1 - 2.39T + 53T^{2} \) |
| 59 | \( 1 + (-1.41 + 2.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.16 - 3.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2 - 3.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4.33T + 73T^{2} \) |
| 79 | \( 1 + 6.60T + 79T^{2} \) |
| 83 | \( 1 - 2.82T + 83T^{2} \) |
| 89 | \( 1 + (3.25 + 5.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.83 + 11.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26222897437973536190597119266, −9.097450948511925333605159400527, −8.373809881170775037067204240049, −7.44394832846832267683733722316, −6.04833805952108573399105828853, −5.65502845650550796114012482173, −3.68960547837397041636009258577, −2.42441246894867687522291625691, −1.56284211725174995451881222743, −0.24180487227083459192103064091,
2.27767983567120718258852681783, 4.56728148578927855568062542163, 5.02103384332134758367868695578, 5.94202421540598208808864746187, 6.92498480371723243229774325658, 7.53544377308828971296252325705, 8.994608713065853507283245242052, 9.487778786814506818322621036381, 9.978520127920313271985474553002, 10.83614840734325901527247090856