Properties

Label 2-637-13.3-c1-0-33
Degree $2$
Conductor $637$
Sign $0.281 + 0.959i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.134 + 0.232i)2-s + (−0.571 − 0.989i)3-s + (0.964 − 1.66i)4-s + 2.56·5-s + (0.153 − 0.265i)6-s + 1.05·8-s + (0.846 − 1.46i)9-s + (0.343 + 0.594i)10-s + (−1.97 − 3.41i)11-s − 2.20·12-s + (3.15 + 1.74i)13-s + (−1.46 − 2.53i)15-s + (−1.78 − 3.09i)16-s + (0.392 − 0.679i)17-s + 0.454·18-s + (−3.74 + 6.49i)19-s + ⋯
L(s)  = 1  + (0.0947 + 0.164i)2-s + (−0.329 − 0.571i)3-s + (0.482 − 0.834i)4-s + 1.14·5-s + (0.0625 − 0.108i)6-s + 0.372·8-s + (0.282 − 0.488i)9-s + (0.108 + 0.188i)10-s + (−0.594 − 1.03i)11-s − 0.636·12-s + (0.874 + 0.484i)13-s + (−0.378 − 0.654i)15-s + (−0.446 − 0.773i)16-s + (0.0952 − 0.164i)17-s + 0.107·18-s + (−0.859 + 1.48i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.281 + 0.959i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (393, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.281 + 0.959i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.53789 - 1.15099i\)
\(L(\frac12)\) \(\approx\) \(1.53789 - 1.15099i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-3.15 - 1.74i)T \)
good2 \( 1 + (-0.134 - 0.232i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (0.571 + 0.989i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 - 2.56T + 5T^{2} \)
11 \( 1 + (1.97 + 3.41i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-0.392 + 0.679i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.74 - 6.49i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.97 - 6.88i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.17 + 2.03i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 2.55T + 31T^{2} \)
37 \( 1 + (3.37 + 5.85i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.21 + 2.11i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-1.12 + 1.94i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 1.31T + 47T^{2} \)
53 \( 1 - 9.27T + 53T^{2} \)
59 \( 1 + (4.48 - 7.76i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.72 + 8.18i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.676 - 1.17i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (6.15 - 10.6i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + 0.768T + 73T^{2} \)
79 \( 1 - 6.19T + 79T^{2} \)
83 \( 1 - 1.07T + 83T^{2} \)
89 \( 1 + (-3.83 - 6.63i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (1.18 - 2.05i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42291681610736618589527553011, −9.671054764039604353078833578090, −8.770324600513395818811817705636, −7.51489497820841464461652781794, −6.53682305896014394615375190914, −5.87825604904233719213259027710, −5.47268005349330258614069434729, −3.71908885641259085426166721123, −2.08986965524769999493118566556, −1.15551818511442488990243480011, 1.95350651225808498191316490983, 2.87624789559039379976685943527, 4.38705612538535557116335007335, 5.07704255625770446926722832577, 6.32110268338046776670878455673, 7.09363593503403342885026821609, 8.208664315642945838596089441135, 9.075396869531249836264215488442, 10.26061609411777758900255769146, 10.57050619590956214243973787064

Graph of the $Z$-function along the critical line