L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.707 − 1.22i)3-s + (0.500 − 0.866i)4-s + 4.09·5-s + (−0.707 + 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (−2.04 − 3.54i)10-s + (1.89 + 3.28i)11-s − 1.41·12-s + (−0.634 − 3.54i)13-s + (−2.89 − 5.01i)15-s + (0.500 + 0.866i)16-s + (0.634 − 1.09i)17-s − 1.00·18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.408 − 0.707i)3-s + (0.250 − 0.433i)4-s + 1.83·5-s + (−0.288 + 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (−0.647 − 1.12i)10-s + (0.572 + 0.991i)11-s − 0.408·12-s + (−0.176 − 0.984i)13-s + (−0.748 − 1.29i)15-s + (0.125 + 0.216i)16-s + (0.153 − 0.266i)17-s − 0.235·18-s + (0.324 − 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.746473 - 1.41851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.746473 - 1.41851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (0.634 + 3.54i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.707 + 1.22i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 4.09T + 5T^{2} \) |
| 11 | \( 1 + (-1.89 - 3.28i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.634 + 1.09i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.89 - 6.75i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.397 + 0.689i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.41T + 31T^{2} \) |
| 37 | \( 1 + (1.39 + 2.42i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.48 + 2.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.89 - 6.75i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + 12.5T + 53T^{2} \) |
| 59 | \( 1 + (-6.21 + 10.7i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.17 - 7.22i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.89 - 3.28i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.5T + 73T^{2} \) |
| 79 | \( 1 + 2.20T + 79T^{2} \) |
| 83 | \( 1 + 9.89T + 83T^{2} \) |
| 89 | \( 1 + (-7.48 - 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.12 + 3.67i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08662103297143632092617027769, −9.620886269399728999300259177659, −9.073796135688037548811002529183, −7.33264529646235685025673298359, −6.62565652719221107625113687229, −5.80302163376652866964315317000, −5.13515405868487536186666554242, −3.03905272948381252521085574597, −1.88022673012806132182412890956, −1.14423458857019977662047049032,
1.83045509365056935015039331927, 3.17073437718250360058143175614, 4.63446522518492835427187290604, 5.72289784736615186666225095090, 6.29832997321078312210044553898, 7.12671152473831952617863435905, 8.540418093346059376237589206280, 9.106600271988748835685429285810, 9.919787923764635484117936017566, 10.67071817006721559873442472223