L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.707 − 1.22i)3-s + (0.500 − 0.866i)4-s + 4.09·5-s + (−0.707 + 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (−2.04 − 3.54i)10-s + (1.89 + 3.28i)11-s − 1.41·12-s + (−0.634 − 3.54i)13-s + (−2.89 − 5.01i)15-s + (0.500 + 0.866i)16-s + (0.634 − 1.09i)17-s − 1.00·18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.408 − 0.707i)3-s + (0.250 − 0.433i)4-s + 1.83·5-s + (−0.288 + 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (−0.647 − 1.12i)10-s + (0.572 + 0.991i)11-s − 0.408·12-s + (−0.176 − 0.984i)13-s + (−0.748 − 1.29i)15-s + (0.125 + 0.216i)16-s + (0.153 − 0.266i)17-s − 0.235·18-s + (0.324 − 0.561i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.566+0.824i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.566+0.824i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.566+0.824i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.566+0.824i)
|
Particular Values
L(1) |
≈ |
0.746473−1.41851i |
L(21) |
≈ |
0.746473−1.41851i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.634+3.54i)T |
good | 2 | 1+(0.5+0.866i)T+(−1+1.73i)T2 |
| 3 | 1+(0.707+1.22i)T+(−1.5+2.59i)T2 |
| 5 | 1−4.09T+5T2 |
| 11 | 1+(−1.89−3.28i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.634+1.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.41+2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.89−6.75i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.397+0.689i)T+(−14.5+25.1i)T2 |
| 31 | 1+1.41T+31T2 |
| 37 | 1+(1.39+2.42i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.48+2.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.89−6.75i)T+(−21.5−37.2i)T2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1+12.5T+53T2 |
| 59 | 1+(−6.21+10.7i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.17−7.22i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.89−3.28i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1+12.5T+73T2 |
| 79 | 1+2.20T+79T2 |
| 83 | 1+9.89T+83T2 |
| 89 | 1+(−7.48−12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−2.12+3.67i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08662103297143632092617027769, −9.620886269399728999300259177659, −9.073796135688037548811002529183, −7.33264529646235685025673298359, −6.62565652719221107625113687229, −5.80302163376652866964315317000, −5.13515405868487536186666554242, −3.03905272948381252521085574597, −1.88022673012806132182412890956, −1.14423458857019977662047049032,
1.83045509365056935015039331927, 3.17073437718250360058143175614, 4.63446522518492835427187290604, 5.72289784736615186666225095090, 6.29832997321078312210044553898, 7.12671152473831952617863435905, 8.540418093346059376237589206280, 9.106600271988748835685429285810, 9.919787923764635484117936017566, 10.67071817006721559873442472223