L(s) = 1 | + (−1.21 − 2.10i)2-s + (−0.376 − 0.652i)3-s + (−1.95 + 3.39i)4-s + 0.341·5-s + (−0.916 + 1.58i)6-s + 4.65·8-s + (1.21 − 2.10i)9-s + (−0.415 − 0.719i)10-s + (1.21 + 2.10i)11-s + 2.95·12-s + (2.50 − 2.59i)13-s + (−0.128 − 0.222i)15-s + (−1.74 − 3.02i)16-s + (0.974 − 1.68i)17-s − 5.91·18-s + (3.14 − 5.44i)19-s + ⋯ |
L(s) = 1 | + (−0.859 − 1.48i)2-s + (−0.217 − 0.376i)3-s + (−0.978 + 1.69i)4-s + 0.152·5-s + (−0.374 + 0.647i)6-s + 1.64·8-s + (0.405 − 0.702i)9-s + (−0.131 − 0.227i)10-s + (0.366 + 0.635i)11-s + 0.851·12-s + (0.693 − 0.720i)13-s + (−0.0332 − 0.0575i)15-s + (−0.437 − 0.757i)16-s + (0.236 − 0.409i)17-s − 1.39·18-s + (0.721 − 1.24i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0251i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0251i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0102661 - 0.817542i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0102661 - 0.817542i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-2.50 + 2.59i)T \) |
good | 2 | \( 1 + (1.21 + 2.10i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.376 + 0.652i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.341T + 5T^{2} \) |
| 11 | \( 1 + (-1.21 - 2.10i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.974 + 1.68i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.14 + 5.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.84 - 3.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.22 + 3.84i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.97T + 31T^{2} \) |
| 37 | \( 1 + (-4.81 - 8.33i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6.26 + 10.8i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.20 + 7.28i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.00T + 47T^{2} \) |
| 53 | \( 1 - 1.49T + 53T^{2} \) |
| 59 | \( 1 + (0.313 - 0.542i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.571 + 0.990i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.79 - 4.84i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.74 - 8.22i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11.9T + 73T^{2} \) |
| 79 | \( 1 - 4.47T + 79T^{2} \) |
| 83 | \( 1 - 1.41T + 83T^{2} \) |
| 89 | \( 1 + (6.22 + 10.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.13 - 8.90i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.994076583383720241507836044818, −9.587215429734493864531662314111, −8.774109107701047404091499646453, −7.70159368046002348768788674314, −6.83605521799790520831705036074, −5.50841613685318383193933388313, −4.04034477824557599164036466264, −3.12516346707865008786577864964, −1.80515769542522829470395819796, −0.68533658273075388308636848416,
1.46984545366465835967030062283, 3.74731159138312938036909757254, 4.97158100281800306629645489461, 5.89582806615182201394609405300, 6.50675026437480524934834370217, 7.67504114297580053763741108412, 8.186273752422438405350178877444, 9.223482376379168575480517408679, 9.794143783776285042972786072993, 10.71340135218825846508186972471