L(s) = 1 | + (0.760 + 1.31i)2-s + (1.06 + 1.84i)3-s + (−0.156 + 0.270i)4-s + 0.589·5-s + (−1.61 + 2.80i)6-s + 2.56·8-s + (−0.760 + 1.31i)9-s + (0.448 + 0.776i)10-s + (−0.760 − 1.31i)11-s − 0.664·12-s + (3.32 + 1.39i)13-s + (0.626 + 1.08i)15-s + (2.26 + 3.92i)16-s + (−2.39 + 4.15i)17-s − 2.31·18-s + (−0.841 + 1.45i)19-s + ⋯ |
L(s) = 1 | + (0.537 + 0.931i)2-s + (0.613 + 1.06i)3-s + (−0.0781 + 0.135i)4-s + 0.263·5-s + (−0.660 + 1.14i)6-s + 0.907·8-s + (−0.253 + 0.439i)9-s + (0.141 + 0.245i)10-s + (−0.229 − 0.397i)11-s − 0.191·12-s + (0.922 + 0.386i)13-s + (0.161 + 0.280i)15-s + (0.565 + 0.980i)16-s + (−0.581 + 1.00i)17-s − 0.545·18-s + (−0.193 + 0.334i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.384−0.922i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.384−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.384−0.922i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.384−0.922i)
|
Particular Values
L(1) |
≈ |
1.50939+2.26506i |
L(21) |
≈ |
1.50939+2.26506i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.32−1.39i)T |
good | 2 | 1+(−0.760−1.31i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.06−1.84i)T+(−1.5+2.59i)T2 |
| 5 | 1−0.589T+5T2 |
| 11 | 1+(0.760+1.31i)T+(−5.5+9.52i)T2 |
| 17 | 1+(2.39−4.15i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.841−1.45i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.886+1.53i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.44+5.96i)T+(−14.5+25.1i)T2 |
| 31 | 1+6.08T+31T2 |
| 37 | 1+(0.704+1.22i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.677+1.17i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.77+10.0i)T+(−21.5−37.2i)T2 |
| 47 | 1+0.464T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1+(−5.93+10.2i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.24−2.14i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.78−6.55i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.30−5.71i)T+(−35.5−61.4i)T2 |
| 73 | 1+16.3T+73T2 |
| 79 | 1+14.9T+79T2 |
| 83 | 1−10.1T+83T2 |
| 89 | 1+(8.24+14.2i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.486+0.843i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59642131982415613345034539959, −10.05005414095369143970241146965, −8.936365249817399328127448105663, −8.336257165473213422778812221928, −7.21554929619358064909680851743, −6.10832746671092656846130164387, −5.55766558227228067816851031032, −4.18162897725555001876742784698, −3.80972534675549788431734296624, −2.01061848449569760489930310482,
1.42568431320038204824636494391, 2.35079628947152365897669539918, 3.26574645031640555276931114328, 4.46254209251003209617155633425, 5.67747042755073640721513107154, 7.01551029957082355296052949411, 7.54022606915036752716598066733, 8.511427369344485678857459171185, 9.492894849439807616682533248596, 10.60032147713254548156925799165