L(s) = 1 | + (0.760 + 1.31i)2-s + (1.06 + 1.84i)3-s + (−0.156 + 0.270i)4-s + 0.589·5-s + (−1.61 + 2.80i)6-s + 2.56·8-s + (−0.760 + 1.31i)9-s + (0.448 + 0.776i)10-s + (−0.760 − 1.31i)11-s − 0.664·12-s + (3.32 + 1.39i)13-s + (0.626 + 1.08i)15-s + (2.26 + 3.92i)16-s + (−2.39 + 4.15i)17-s − 2.31·18-s + (−0.841 + 1.45i)19-s + ⋯ |
L(s) = 1 | + (0.537 + 0.931i)2-s + (0.613 + 1.06i)3-s + (−0.0781 + 0.135i)4-s + 0.263·5-s + (−0.660 + 1.14i)6-s + 0.907·8-s + (−0.253 + 0.439i)9-s + (0.141 + 0.245i)10-s + (−0.229 − 0.397i)11-s − 0.191·12-s + (0.922 + 0.386i)13-s + (0.161 + 0.280i)15-s + (0.565 + 0.980i)16-s + (−0.581 + 1.00i)17-s − 0.545·18-s + (−0.193 + 0.334i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.50939 + 2.26506i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.50939 + 2.26506i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.32 - 1.39i)T \) |
good | 2 | \( 1 + (-0.760 - 1.31i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.06 - 1.84i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.589T + 5T^{2} \) |
| 11 | \( 1 + (0.760 + 1.31i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.39 - 4.15i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.841 - 1.45i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.886 + 1.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.44 + 5.96i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 6.08T + 31T^{2} \) |
| 37 | \( 1 + (0.704 + 1.22i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.677 + 1.17i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.77 + 10.0i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 0.464T + 47T^{2} \) |
| 53 | \( 1 - 8.24T + 53T^{2} \) |
| 59 | \( 1 + (-5.93 + 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.24 - 2.14i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.78 - 6.55i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.30 - 5.71i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 16.3T + 73T^{2} \) |
| 79 | \( 1 + 14.9T + 79T^{2} \) |
| 83 | \( 1 - 10.1T + 83T^{2} \) |
| 89 | \( 1 + (8.24 + 14.2i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.486 + 0.843i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59642131982415613345034539959, −10.05005414095369143970241146965, −8.936365249817399328127448105663, −8.336257165473213422778812221928, −7.21554929619358064909680851743, −6.10832746671092656846130164387, −5.55766558227228067816851031032, −4.18162897725555001876742784698, −3.80972534675549788431734296624, −2.01061848449569760489930310482,
1.42568431320038204824636494391, 2.35079628947152365897669539918, 3.26574645031640555276931114328, 4.46254209251003209617155633425, 5.67747042755073640721513107154, 7.01551029957082355296052949411, 7.54022606915036752716598066733, 8.511427369344485678857459171185, 9.492894849439807616682533248596, 10.60032147713254548156925799165