L(s) = 1 | − 0.688i·2-s + 2.21·3-s + 1.52·4-s + 3.21i·5-s − 1.52i·6-s − 2.42i·8-s + 1.90·9-s + 2.21·10-s + 2.68i·11-s + 3.37·12-s + (−3.59 + 0.311i)13-s + 7.11i·15-s + 1.37·16-s + 3.59·17-s − 1.31i·18-s − 8.54i·19-s + ⋯ |
L(s) = 1 | − 0.487i·2-s + 1.27·3-s + 0.762·4-s + 1.43i·5-s − 0.622i·6-s − 0.858i·8-s + 0.634·9-s + 0.700·10-s + 0.810i·11-s + 0.975·12-s + (−0.996 + 0.0862i)13-s + 1.83i·15-s + 0.344·16-s + 0.871·17-s − 0.309i·18-s − 1.96i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.62575 + 0.113494i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.62575 + 0.113494i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.59 - 0.311i)T \) |
good | 2 | \( 1 + 0.688iT - 2T^{2} \) |
| 3 | \( 1 - 2.21T + 3T^{2} \) |
| 5 | \( 1 - 3.21iT - 5T^{2} \) |
| 11 | \( 1 - 2.68iT - 11T^{2} \) |
| 17 | \( 1 - 3.59T + 17T^{2} \) |
| 19 | \( 1 + 8.54iT - 19T^{2} \) |
| 23 | \( 1 - 3.28T + 23T^{2} \) |
| 29 | \( 1 - 2.05T + 29T^{2} \) |
| 31 | \( 1 - 5.83iT - 31T^{2} \) |
| 37 | \( 1 - 3.93iT - 37T^{2} \) |
| 41 | \( 1 - 0.755iT - 41T^{2} \) |
| 43 | \( 1 + 8.80T + 43T^{2} \) |
| 47 | \( 1 + 1.88iT - 47T^{2} \) |
| 53 | \( 1 - 2.52T + 53T^{2} \) |
| 59 | \( 1 + 7.33iT - 59T^{2} \) |
| 61 | \( 1 + 9.05T + 61T^{2} \) |
| 67 | \( 1 + 0.428iT - 67T^{2} \) |
| 71 | \( 1 + 8.98iT - 71T^{2} \) |
| 73 | \( 1 + 5.79iT - 73T^{2} \) |
| 79 | \( 1 + 4.47T + 79T^{2} \) |
| 83 | \( 1 + 10.8iT - 83T^{2} \) |
| 89 | \( 1 + 5.36iT - 89T^{2} \) |
| 97 | \( 1 - 9.62iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46567800283373302614169230903, −9.892265699997627177598683001712, −9.042399366989523153030017267562, −7.73488439584258491911536779021, −7.12756381699961306019344311468, −6.58153418045794723146337232060, −4.83993584534087142284875673239, −3.23684119880560077967834410851, −2.90942201973067085614059673007, −1.99214352820529198237866958438,
1.48151181388572481382849375305, 2.73634963356593528533385365846, 3.84550983473859407535910963826, 5.24155405214017147076790293919, 5.94223799179869466443996340776, 7.40882577663716352935349979024, 8.062996421039981561498908701162, 8.534542838270513247230820580017, 9.474007303268049697593897500437, 10.29748060349502491421132984095