Properties

Label 2-637-13.10-c1-0-14
Degree $2$
Conductor $637$
Sign $0.993 + 0.114i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 + 1.15i)2-s + (−0.736 − 1.27i)3-s + (1.65 − 2.86i)4-s + 0.847i·5-s + (2.93 + 1.69i)6-s + 3.00i·8-s + (0.414 − 0.718i)9-s + (−0.975 − 1.69i)10-s + (−1.30 + 0.751i)11-s − 4.86·12-s + (2.92 + 2.11i)13-s + (1.08 − 0.624i)15-s + (−0.156 − 0.271i)16-s + (−1.03 + 1.79i)17-s + 1.90i·18-s + (0.0410 + 0.0237i)19-s + ⋯
L(s)  = 1  + (−1.41 + 0.814i)2-s + (−0.425 − 0.736i)3-s + (0.826 − 1.43i)4-s + 0.378i·5-s + (1.19 + 0.692i)6-s + 1.06i·8-s + (0.138 − 0.239i)9-s + (−0.308 − 0.534i)10-s + (−0.392 + 0.226i)11-s − 1.40·12-s + (0.810 + 0.585i)13-s + (0.279 − 0.161i)15-s + (−0.0391 − 0.0678i)16-s + (−0.251 + 0.435i)17-s + 0.450i·18-s + (0.00942 + 0.00544i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.114i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.993 + 0.114i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.993 + 0.114i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.590786 - 0.0338739i\)
\(L(\frac12)\) \(\approx\) \(0.590786 - 0.0338739i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-2.92 - 2.11i)T \)
good2 \( 1 + (1.99 - 1.15i)T + (1 - 1.73i)T^{2} \)
3 \( 1 + (0.736 + 1.27i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 - 0.847iT - 5T^{2} \)
11 \( 1 + (1.30 - 0.751i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (1.03 - 1.79i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.0410 - 0.0237i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.90 + 6.77i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.679 + 1.17i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 7.86iT - 31T^{2} \)
37 \( 1 + (-5.80 + 3.35i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-8.67 + 5.00i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.63 + 8.02i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 0.360iT - 47T^{2} \)
53 \( 1 - 2.71T + 53T^{2} \)
59 \( 1 + (-1.42 - 0.820i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-2.26 + 3.91i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.76 + 1.02i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-12.3 - 7.10i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 6.76iT - 73T^{2} \)
79 \( 1 - 11.6T + 79T^{2} \)
83 \( 1 - 11.5iT - 83T^{2} \)
89 \( 1 + (-15.1 + 8.75i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (0.369 + 0.213i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56264980333152637397710358717, −9.480490152893450104452723942074, −8.705591872051948235781088489317, −7.911117096722476019477247933512, −6.95058783278447231156005107504, −6.54908523797192482614832917459, −5.70355180222164929993973127110, −4.02135805245658708602704219308, −2.09905615611207210115405736401, −0.73256520655274577548863782401, 0.988370147811691151376066508461, 2.48932704501639980719271345451, 3.78942018454969295189895153707, 5.02338370227947612035640946794, 6.03259010198382368766655718572, 7.66908070968867289463514690489, 8.074289799464471423156187587853, 9.277510319947689348671891209685, 9.661240354816095298354385834810, 10.60515330530239127868796417660

Graph of the $Z$-function along the critical line