L(s) = 1 | + (0.156 − 0.0904i)2-s + (0.913 + 1.58i)3-s + (−0.983 + 1.70i)4-s + 2.68i·5-s + (0.285 + 0.165i)6-s + 0.717i·8-s + (−0.167 + 0.289i)9-s + (0.242 + 0.420i)10-s + (−2.33 + 1.34i)11-s − 3.59·12-s + (1.92 + 3.05i)13-s + (−4.24 + 2.45i)15-s + (−1.90 − 3.29i)16-s + (2.38 − 4.12i)17-s + 0.0604i·18-s + (−0.163 − 0.0942i)19-s + ⋯ |
L(s) = 1 | + (0.110 − 0.0639i)2-s + (0.527 + 0.913i)3-s + (−0.491 + 0.851i)4-s + 1.20i·5-s + (0.116 + 0.0673i)6-s + 0.253i·8-s + (−0.0557 + 0.0965i)9-s + (0.0768 + 0.133i)10-s + (−0.703 + 0.406i)11-s − 1.03·12-s + (0.532 + 0.846i)13-s + (−1.09 + 0.633i)15-s + (−0.475 − 0.823i)16-s + (0.577 − 1.00i)17-s + 0.0142i·18-s + (−0.0374 − 0.0216i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.878 - 0.477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.878 - 0.477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.378096 + 1.48709i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.378096 + 1.48709i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1.92 - 3.05i)T \) |
good | 2 | \( 1 + (-0.156 + 0.0904i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.913 - 1.58i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.68iT - 5T^{2} \) |
| 11 | \( 1 + (2.33 - 1.34i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.38 + 4.12i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.163 + 0.0942i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.19 - 3.80i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.54 + 6.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.69iT - 31T^{2} \) |
| 37 | \( 1 + (6.88 - 3.97i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.70 + 2.71i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.00 - 6.93i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.84iT - 47T^{2} \) |
| 53 | \( 1 + 7.07T + 53T^{2} \) |
| 59 | \( 1 + (-6.57 - 3.79i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.205 + 0.356i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.87 + 5.70i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.89 - 1.67i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 14.2iT - 73T^{2} \) |
| 79 | \( 1 - 9.11T + 79T^{2} \) |
| 83 | \( 1 - 16.5iT - 83T^{2} \) |
| 89 | \( 1 + (-5.10 + 2.94i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.390 - 0.225i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98077883448616842789174709205, −9.750713001596074537146434336883, −9.521563759395299399857943315860, −8.367691431820097209261299480781, −7.49002357827674346702837875529, −6.69585880446788713677718688333, −5.20447613017797282366227963317, −4.15426876262368627613650930173, −3.37911443448704959944585074798, −2.57005561166892772922646766627,
0.803596842046178423980116414797, 1.81716032453080743232143775180, 3.49498495256645420442730947751, 4.94172228599133191560678507622, 5.48305591669110578890759884928, 6.57932561547311344422251929978, 7.80793211629121603473076255071, 8.531550228633307455191246574478, 8.994984615422094153930172981117, 10.33983976017042755094165395810