L(s) = 1 | − 0.195·2-s − 0.259·3-s − 1.96·4-s + 3.93·5-s + 0.0508·6-s + 0.775·8-s − 2.93·9-s − 0.769·10-s + 4.50·11-s + 0.509·12-s + 13-s − 1.02·15-s + 3.77·16-s − 2.28·17-s + 0.573·18-s − 1.78·19-s − 7.71·20-s − 0.881·22-s + 1.74·23-s − 0.201·24-s + 10.4·25-s − 0.195·26-s + 1.54·27-s + 1.65·29-s + 0.199·30-s + 5.60·31-s − 2.28·32-s + ⋯ |
L(s) = 1 | − 0.138·2-s − 0.149·3-s − 0.980·4-s + 1.75·5-s + 0.0207·6-s + 0.274·8-s − 0.977·9-s − 0.243·10-s + 1.35·11-s + 0.147·12-s + 0.277·13-s − 0.263·15-s + 0.942·16-s − 0.553·17-s + 0.135·18-s − 0.410·19-s − 1.72·20-s − 0.187·22-s + 0.362·23-s − 0.0411·24-s + 2.09·25-s − 0.0383·26-s + 0.296·27-s + 0.306·29-s + 0.0364·30-s + 1.00·31-s − 0.404·32-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.457931517 |
L(21) |
≈ |
1.457931517 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1+0.195T+2T2 |
| 3 | 1+0.259T+3T2 |
| 5 | 1−3.93T+5T2 |
| 11 | 1−4.50T+11T2 |
| 17 | 1+2.28T+17T2 |
| 19 | 1+1.78T+19T2 |
| 23 | 1−1.74T+23T2 |
| 29 | 1−1.65T+29T2 |
| 31 | 1−5.60T+31T2 |
| 37 | 1−7.14T+37T2 |
| 41 | 1+8.11T+41T2 |
| 43 | 1−6.81T+43T2 |
| 47 | 1−3.54T+47T2 |
| 53 | 1−3.28T+53T2 |
| 59 | 1−4.50T+59T2 |
| 61 | 1−7.54T+61T2 |
| 67 | 1+12.6T+67T2 |
| 71 | 1−9.54T+71T2 |
| 73 | 1−1.08T+73T2 |
| 79 | 1−0.791T+79T2 |
| 83 | 1+7.14T+83T2 |
| 89 | 1+11.2T+89T2 |
| 97 | 1+8.81T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36110620479067596003155069244, −9.572817839349911366904369790832, −8.975133828205401973565169243250, −8.392307526431928522157372431685, −6.69757501810445103551369381232, −6.02883304303346113051358692948, −5.22509066933486439733252162204, −4.12836263864436883298067059119, −2.63643294720511834793319575028, −1.19271414644531081978401165037,
1.19271414644531081978401165037, 2.63643294720511834793319575028, 4.12836263864436883298067059119, 5.22509066933486439733252162204, 6.02883304303346113051358692948, 6.69757501810445103551369381232, 8.392307526431928522157372431685, 8.975133828205401973565169243250, 9.572817839349911366904369790832, 10.36110620479067596003155069244