Properties

Label 2-6336-1.1-c1-0-49
Degree $2$
Conductor $6336$
Sign $-1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 4·7-s + 11-s + 2·13-s + 8·17-s − 6·19-s − 5·23-s + 4·25-s + 4·29-s + 31-s + 12·35-s − 3·37-s + 6·41-s + 6·43-s + 12·47-s + 9·49-s − 6·53-s − 3·55-s + 3·59-s − 6·65-s − 11·67-s + 5·71-s − 10·73-s − 4·77-s − 2·79-s − 2·83-s − 24·85-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.51·7-s + 0.301·11-s + 0.554·13-s + 1.94·17-s − 1.37·19-s − 1.04·23-s + 4/5·25-s + 0.742·29-s + 0.179·31-s + 2.02·35-s − 0.493·37-s + 0.937·41-s + 0.914·43-s + 1.75·47-s + 9/7·49-s − 0.824·53-s − 0.404·55-s + 0.390·59-s − 0.744·65-s − 1.34·67-s + 0.593·71-s − 1.17·73-s − 0.455·77-s − 0.225·79-s − 0.219·83-s − 2.60·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64917317542877670356044654074, −7.09189229634945910249225174837, −6.12575951092354248118947396597, −5.89202106517789488102139723477, −4.53287493758271029911779130814, −3.83733764673944861598118900337, −3.43778877144274756195405556734, −2.54702017160053200485681408944, −1.02281222444134172563248729402, 0, 1.02281222444134172563248729402, 2.54702017160053200485681408944, 3.43778877144274756195405556734, 3.83733764673944861598118900337, 4.53287493758271029911779130814, 5.89202106517789488102139723477, 6.12575951092354248118947396597, 7.09189229634945910249225174837, 7.64917317542877670356044654074

Graph of the $Z$-function along the critical line