Properties

Label 2-6336-1.1-c1-0-25
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s + 4·13-s + 6·17-s − 4·19-s + 6·23-s − 5·25-s + 6·29-s − 8·31-s + 10·37-s − 6·41-s + 8·43-s − 6·47-s − 3·49-s − 8·61-s − 4·67-s + 6·71-s + 2·73-s − 2·77-s − 14·79-s + 12·83-s + 6·89-s − 8·91-s + 14·97-s + 6·101-s + 4·103-s + 12·107-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s + 1.10·13-s + 1.45·17-s − 0.917·19-s + 1.25·23-s − 25-s + 1.11·29-s − 1.43·31-s + 1.64·37-s − 0.937·41-s + 1.21·43-s − 0.875·47-s − 3/7·49-s − 1.02·61-s − 0.488·67-s + 0.712·71-s + 0.234·73-s − 0.227·77-s − 1.57·79-s + 1.31·83-s + 0.635·89-s − 0.838·91-s + 1.42·97-s + 0.597·101-s + 0.394·103-s + 1.16·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.952467348\)
\(L(\frac12)\) \(\approx\) \(1.952467348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.990007746064461326872519078273, −7.38377174658580997166042366079, −6.40864434101561615097433391410, −6.11485173072225725039951775848, −5.26285470699018847158598494284, −4.30603307745423902511409530972, −3.52394436125708712603168440916, −2.97366741962795049276596787100, −1.74289628806760359792201029535, −0.74841655188926250687663175586, 0.74841655188926250687663175586, 1.74289628806760359792201029535, 2.97366741962795049276596787100, 3.52394436125708712603168440916, 4.30603307745423902511409530972, 5.26285470699018847158598494284, 6.11485173072225725039951775848, 6.40864434101561615097433391410, 7.38377174658580997166042366079, 7.990007746064461326872519078273

Graph of the $Z$-function along the critical line