Properties

Label 2-6336-1.1-c1-0-19
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s − 11-s + 6·13-s − 2·17-s − 4·19-s − 4·23-s − 25-s + 6·29-s − 8·35-s − 6·37-s + 6·41-s − 4·43-s + 12·47-s + 9·49-s + 2·53-s − 2·55-s + 12·59-s + 14·61-s + 12·65-s − 4·67-s + 12·71-s − 6·73-s + 4·77-s − 4·79-s + 4·83-s − 4·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s − 0.301·11-s + 1.66·13-s − 0.485·17-s − 0.917·19-s − 0.834·23-s − 1/5·25-s + 1.11·29-s − 1.35·35-s − 0.986·37-s + 0.937·41-s − 0.609·43-s + 1.75·47-s + 9/7·49-s + 0.274·53-s − 0.269·55-s + 1.56·59-s + 1.79·61-s + 1.48·65-s − 0.488·67-s + 1.42·71-s − 0.702·73-s + 0.455·77-s − 0.450·79-s + 0.439·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.791442252\)
\(L(\frac12)\) \(\approx\) \(1.791442252\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.288683908358154144546328543998, −7.04694782647470407191514539624, −6.51503267263782800870717672489, −5.98632558021583238878804254265, −5.49355597914156386912328033057, −4.19689350241926690371497535314, −3.66487191683449651589408155835, −2.70238009742303454701502000782, −1.95816510427660270529639249163, −0.67974140487940718393639609709, 0.67974140487940718393639609709, 1.95816510427660270529639249163, 2.70238009742303454701502000782, 3.66487191683449651589408155835, 4.19689350241926690371497535314, 5.49355597914156386912328033057, 5.98632558021583238878804254265, 6.51503267263782800870717672489, 7.04694782647470407191514539624, 8.288683908358154144546328543998

Graph of the $Z$-function along the critical line