Properties

Label 2-6336-1.1-c1-0-11
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s + 11-s + 2·13-s + 2·19-s − 25-s − 8·29-s − 4·31-s + 4·35-s + 6·37-s + 4·41-s + 6·43-s − 8·47-s − 3·49-s − 6·53-s − 2·55-s + 4·59-s + 6·61-s − 4·65-s + 4·67-s − 8·71-s − 10·73-s − 2·77-s + 14·79-s + 8·83-s − 2·89-s − 4·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s + 0.301·11-s + 0.554·13-s + 0.458·19-s − 1/5·25-s − 1.48·29-s − 0.718·31-s + 0.676·35-s + 0.986·37-s + 0.624·41-s + 0.914·43-s − 1.16·47-s − 3/7·49-s − 0.824·53-s − 0.269·55-s + 0.520·59-s + 0.768·61-s − 0.496·65-s + 0.488·67-s − 0.949·71-s − 1.17·73-s − 0.227·77-s + 1.57·79-s + 0.878·83-s − 0.211·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.159947346\)
\(L(\frac12)\) \(\approx\) \(1.159947346\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81375506924883329814512959302, −7.52101383793793774305346433608, −6.60013265187412192040134496781, −6.00715105147020958206847240899, −5.20986180312562036878248115139, −4.16665702556226649237695124076, −3.68724547339914809803628532317, −2.97641658275604673309547181031, −1.79406685802117218926139785798, −0.55418663748464369189567740538, 0.55418663748464369189567740538, 1.79406685802117218926139785798, 2.97641658275604673309547181031, 3.68724547339914809803628532317, 4.16665702556226649237695124076, 5.20986180312562036878248115139, 6.00715105147020958206847240899, 6.60013265187412192040134496781, 7.52101383793793774305346433608, 7.81375506924883329814512959302

Graph of the $Z$-function along the critical line