Properties

Label 2-6336-1.1-c1-0-1
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2·7-s − 11-s + 6·17-s − 4·19-s − 23-s + 4·25-s − 8·29-s − 7·31-s + 6·35-s + 37-s − 4·41-s − 6·43-s + 8·47-s − 3·49-s + 2·53-s + 3·55-s − 59-s − 4·61-s + 5·67-s − 3·71-s + 16·73-s + 2·77-s + 2·79-s − 2·83-s − 18·85-s − 15·89-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.755·7-s − 0.301·11-s + 1.45·17-s − 0.917·19-s − 0.208·23-s + 4/5·25-s − 1.48·29-s − 1.25·31-s + 1.01·35-s + 0.164·37-s − 0.624·41-s − 0.914·43-s + 1.16·47-s − 3/7·49-s + 0.274·53-s + 0.404·55-s − 0.130·59-s − 0.512·61-s + 0.610·67-s − 0.356·71-s + 1.87·73-s + 0.227·77-s + 0.225·79-s − 0.219·83-s − 1.95·85-s − 1.58·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6758238763\)
\(L(\frac12)\) \(\approx\) \(0.6758238763\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.990691719045278208721222124135, −7.37849424424332763125175440867, −6.81172608748271012882089204159, −5.84528783154170478811168793636, −5.24353420321932260945912450328, −4.16390592494301360488588998352, −3.65007101647416280205748713613, −3.03422982849807009100475551361, −1.82093737157603507455602198547, −0.41365712755271202009732742448, 0.41365712755271202009732742448, 1.82093737157603507455602198547, 3.03422982849807009100475551361, 3.65007101647416280205748713613, 4.16390592494301360488588998352, 5.24353420321932260945912450328, 5.84528783154170478811168793636, 6.81172608748271012882089204159, 7.37849424424332763125175440867, 7.990691719045278208721222124135

Graph of the $Z$-function along the critical line