Properties

Label 2-6300-1.1-c1-0-0
Degree $2$
Conductor $6300$
Sign $1$
Analytic cond. $50.3057$
Root an. cond. $7.09265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·11-s − 13-s − 5·17-s − 8·19-s + 2·23-s + 29-s − 2·31-s − 10·37-s + 6·41-s + 4·43-s + 11·47-s + 49-s + 6·53-s + 10·59-s + 10·67-s + 10·73-s + 3·77-s − 7·79-s + 12·83-s − 8·89-s + 91-s − 3·97-s + 12·101-s + 5·103-s + 8·107-s − 7·109-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.904·11-s − 0.277·13-s − 1.21·17-s − 1.83·19-s + 0.417·23-s + 0.185·29-s − 0.359·31-s − 1.64·37-s + 0.937·41-s + 0.609·43-s + 1.60·47-s + 1/7·49-s + 0.824·53-s + 1.30·59-s + 1.22·67-s + 1.17·73-s + 0.341·77-s − 0.787·79-s + 1.31·83-s − 0.847·89-s + 0.104·91-s − 0.304·97-s + 1.19·101-s + 0.492·103-s + 0.773·107-s − 0.670·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6300\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(50.3057\)
Root analytic conductor: \(7.09265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.093994907\)
\(L(\frac12)\) \(\approx\) \(1.093994907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 7 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.134417703760000862320171648003, −7.17531866000457030845146971606, −6.75335303747783836428943890032, −5.91713151770727551400834388302, −5.19121269013267348545942151284, −4.38199065468322356767890565312, −3.71876572007764561674276863501, −2.53357081882484227580521751470, −2.13082614682211648213428780633, −0.51143467196140046597297738372, 0.51143467196140046597297738372, 2.13082614682211648213428780633, 2.53357081882484227580521751470, 3.71876572007764561674276863501, 4.38199065468322356767890565312, 5.19121269013267348545942151284, 5.91713151770727551400834388302, 6.75335303747783836428943890032, 7.17531866000457030845146971606, 8.134417703760000862320171648003

Graph of the $Z$-function along the critical line