L(s) = 1 | + (3.19 + 5.53i)2-s + (−4.41 + 7.64i)4-s + (19.3 + 33.5i)5-s + (−87.5 + 95.6i)7-s + 148.·8-s + (−123. + 214. i)10-s + (−288. + 499. i)11-s + 391.·13-s + (−808. − 178. i)14-s + (614. + 1.06e3i)16-s + (−664. + 1.15e3i)17-s + (−471. − 816. i)19-s − 341.·20-s − 3.68e3·22-s + (−816. − 1.41e3i)23-s + ⋯ |
L(s) = 1 | + (0.564 + 0.978i)2-s + (−0.137 + 0.238i)4-s + (0.346 + 0.599i)5-s + (−0.674 + 0.737i)7-s + 0.817·8-s + (−0.391 + 0.677i)10-s + (−0.718 + 1.24i)11-s + 0.642·13-s + (−1.10 − 0.243i)14-s + (0.599 + 1.03i)16-s + (−0.557 + 0.966i)17-s + (−0.299 − 0.518i)19-s − 0.191·20-s − 1.62·22-s + (−0.321 − 0.557i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.693 - 0.720i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.693 - 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.883186 + 2.07660i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.883186 + 2.07660i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (87.5 - 95.6i)T \) |
good | 2 | \( 1 + (-3.19 - 5.53i)T + (-16 + 27.7i)T^{2} \) |
| 5 | \( 1 + (-19.3 - 33.5i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (288. - 499. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 391.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (664. - 1.15e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (471. + 816. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (816. + 1.41e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 1.46e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.95e3 + 3.38e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-8.15e3 - 1.41e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.31e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.47e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (3.40e3 + 5.90e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.00e3 - 1.74e3i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-2.57e4 + 4.45e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.05e4 + 3.55e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.52e4 - 4.38e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.99e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-2.78e4 + 4.82e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-3.15e4 - 5.46e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 4.55e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-7.84e3 - 1.35e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 3.12e3T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.68151783989654694458387746094, −13.39574908955859247085733735743, −12.59956471139530015840316235422, −10.84297047278288871949512798150, −9.830360321556640579026806338965, −8.180035090900348004371191503094, −6.71873400840573116480909909272, −6.02826249314955159326179488984, −4.50870537155258379275123571692, −2.36558100513748689796042375319,
0.913659814833482489122263478614, 2.86225991646260963046018128783, 4.17474349886671882628330907561, 5.77488693490119691958478933538, 7.55263250614720839577557188872, 9.089910037857500450007260090837, 10.48094318499489890604593045445, 11.25998872055264165015616786521, 12.63170020607479222791478660120, 13.38044492524423633010194496177