L(s) = 1 | + (−2.54 + 4.40i)2-s + (3.08 + 5.33i)4-s + (20.9 − 36.2i)5-s + (−127. − 25.2i)7-s − 193.·8-s + (106. + 184. i)10-s + (36.0 + 62.4i)11-s − 632.·13-s + (434. − 495. i)14-s + (394. − 683. i)16-s + (−987. − 1.71e3i)17-s + (932. − 1.61e3i)19-s + 257.·20-s − 366.·22-s + (206. − 358. i)23-s + ⋯ |
L(s) = 1 | + (−0.449 + 0.778i)2-s + (0.0963 + 0.166i)4-s + (0.374 − 0.647i)5-s + (−0.980 − 0.194i)7-s − 1.07·8-s + (0.336 + 0.582i)10-s + (0.0898 + 0.155i)11-s − 1.03·13-s + (0.592 − 0.675i)14-s + (0.385 − 0.667i)16-s + (−0.829 − 1.43i)17-s + (0.592 − 1.02i)19-s + 0.144·20-s − 0.161·22-s + (0.0815 − 0.141i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.132 + 0.991i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.231780 - 0.264765i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.231780 - 0.264765i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (127. + 25.2i)T \) |
good | 2 | \( 1 + (2.54 - 4.40i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (-20.9 + 36.2i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-36.0 - 62.4i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 632.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (987. + 1.71e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-932. + 1.61e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-206. + 358. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 731.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (3.06e3 + 5.30e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (5.17e3 - 8.96e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 3.52e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.45e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.07e4 - 1.85e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-6.28e3 - 1.08e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.80e4 + 3.12e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.01e3 - 3.48e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (7.78e3 + 1.34e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 1.21e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (9.79e3 + 1.69e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.80e4 - 3.12e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 2.45e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (3.51e4 - 6.08e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.05e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.60313141736047300224875638822, −12.66925079140809371636724775686, −11.53409189820901215731998301775, −9.612213936171578514783608211178, −9.098347115431822718935336626382, −7.47352532906445551643652992223, −6.59963245529876785773131606849, −5.00947575547540185369129840272, −2.85446907406613355330191360649, −0.17387037174013408892591958288,
1.98629366673045850786259681431, 3.34937414094138546247709352559, 5.80111432001345467078370952337, 6.86895219639836137764741346849, 8.818165706125496889832270657627, 10.00006840313375839032572918113, 10.54776121950410922423217440207, 11.92844222642365824583954889327, 12.86646995168249289393100286301, 14.36978427380195443985950356024