L(s) = 1 | + (−0.395 + 0.684i)2-s + (15.6 + 27.1i)4-s + (−52.0 + 90.2i)5-s + (−7.12 − 129. i)7-s − 50.1·8-s + (−41.1 − 71.3i)10-s + (−248. − 430. i)11-s − 206.·13-s + (91.4 + 46.3i)14-s + (−482. + 835. i)16-s + (31.5 + 54.6i)17-s + (−661. + 1.14e3i)19-s − 3.26e3·20-s + 393.·22-s + (−97.2 + 168. i)23-s + ⋯ |
L(s) = 1 | + (−0.0698 + 0.121i)2-s + (0.490 + 0.849i)4-s + (−0.931 + 1.61i)5-s + (−0.0549 − 0.998i)7-s − 0.276·8-s + (−0.130 − 0.225i)10-s + (−0.620 − 1.07i)11-s − 0.338·13-s + (0.124 + 0.0631i)14-s + (−0.470 + 0.815i)16-s + (0.0265 + 0.0459i)17-s + (−0.420 + 0.728i)19-s − 1.82·20-s + 0.173·22-s + (−0.0383 + 0.0663i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 + 0.118i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.992 + 0.118i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.0376668 - 0.635526i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0376668 - 0.635526i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (7.12 + 129. i)T \) |
good | 2 | \( 1 + (0.395 - 0.684i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (52.0 - 90.2i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (248. + 430. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 206.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-31.5 - 54.6i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (661. - 1.14e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (97.2 - 168. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.32e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.76e3 - 6.51e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (5.17e3 - 8.96e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 4.18e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 5.96e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (2.19e3 - 3.80e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-8.89e3 - 1.54e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.75e3 - 3.03e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-5.31e3 + 9.20e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-6.63e3 - 1.14e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.88e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.56e4 + 2.71e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.97e4 - 3.42e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.02e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (5.64e4 - 9.77e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 3.03e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.61797927900795289993661054232, −13.55202788767945386986015260962, −12.09424435501793983936283550861, −11.04413882974535540259722188144, −10.43706585978135634408303443707, −8.180321088817603791552714983958, −7.41229740351126897557598976279, −6.45217917745580103600456006529, −3.83149634142669973452798908691, −2.92349361251216726866432611491,
0.28400935131352758421345348680, 2.09211284816022871516737471710, 4.60778866363151414139165423396, 5.58807260012321450387952585079, 7.45543869112104456208578026632, 8.804170476816982752584267187656, 9.732479535830584873842220635518, 11.34824807947215310715652561805, 12.23544701157219287371818916515, 13.03362918956244499770032342795