| L(s) = 1 | + (1.02 − 0.592i)2-s + (0.410 − 1.68i)3-s + (−0.296 + 0.514i)4-s + (−1.41 + 2.45i)5-s + (−0.576 − 1.97i)6-s + (−0.387 − 2.61i)7-s + 3.07i·8-s + (−2.66 − 1.38i)9-s + 3.36i·10-s + (0.136 − 0.0789i)11-s + (0.743 + 0.710i)12-s + (3.41 + 1.97i)13-s + (−1.95 − 2.45i)14-s + (3.55 + 3.39i)15-s + (1.23 + 2.13i)16-s − 4.14·17-s + ⋯ |
| L(s) = 1 | + (0.726 − 0.419i)2-s + (0.236 − 0.971i)3-s + (−0.148 + 0.257i)4-s + (−0.634 + 1.09i)5-s + (−0.235 − 0.804i)6-s + (−0.146 − 0.989i)7-s + 1.08i·8-s + (−0.887 − 0.460i)9-s + 1.06i·10-s + (0.0412 − 0.0237i)11-s + (0.214 + 0.205i)12-s + (0.947 + 0.546i)13-s + (−0.521 − 0.656i)14-s + (0.917 + 0.876i)15-s + (0.307 + 0.532i)16-s − 1.00·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.777 + 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.06208 - 0.375651i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.06208 - 0.375651i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.410 + 1.68i)T \) |
| 7 | \( 1 + (0.387 + 2.61i)T \) |
| good | 2 | \( 1 + (-1.02 + 0.592i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.41 - 2.45i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.136 + 0.0789i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.41 - 1.97i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.14T + 17T^{2} \) |
| 19 | \( 1 + 6.33iT - 19T^{2} \) |
| 23 | \( 1 + (-0.472 - 0.273i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.02 + 2.32i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.112 + 0.0647i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.46T + 37T^{2} \) |
| 41 | \( 1 + (-1.99 + 3.45i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.28 - 5.68i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.33 - 7.50i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.60iT - 53T^{2} \) |
| 59 | \( 1 + (1.80 - 3.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.91 + 1.68i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.663 - 1.14i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.409iT - 71T^{2} \) |
| 73 | \( 1 - 15.0iT - 73T^{2} \) |
| 79 | \( 1 + (2.16 + 3.74i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.22 + 5.58i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 5.05T + 89T^{2} \) |
| 97 | \( 1 + (-2.18 + 1.26i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.33774894953102524186017533995, −13.67903996516630120000029228568, −12.88847507127516358752926638016, −11.45543484695227114514528406465, −11.00701968835262811866180527323, −8.775724524794482361179486775285, −7.46591618208408046825542593946, −6.54632477421721270573465493562, −4.15688663928536102601116489328, −2.85756727992262370276969731503,
3.78598851610540784836033034186, 4.96313873424734383820890424418, 5.98551446322922219037511982935, 8.360427170526169715537580553323, 9.115035077562957404176015462228, 10.47278941900779748395458798018, 12.00770946724065609157397222200, 13.00807534522014760864669714277, 14.19779621151925445371659752342, 15.36832513252998837790422738853