| L(s) = 1 | + (−0.555 − 0.320i)2-s + (−1.58 − 0.709i)3-s + (−0.794 − 1.37i)4-s + (−1.10 − 1.91i)5-s + (0.650 + 0.901i)6-s + (2.60 − 0.458i)7-s + 2.30i·8-s + (1.99 + 2.24i)9-s + 1.41i·10-s + (−2.93 − 1.69i)11-s + (0.279 + 2.73i)12-s + (1.56 − 0.901i)13-s + (−1.59 − 0.581i)14-s + (0.388 + 3.80i)15-s + (−0.849 + 1.47i)16-s + 5.96·17-s + ⋯ |
| L(s) = 1 | + (−0.392 − 0.226i)2-s + (−0.912 − 0.409i)3-s + (−0.397 − 0.687i)4-s + (−0.494 − 0.856i)5-s + (0.265 + 0.367i)6-s + (0.984 − 0.173i)7-s + 0.813i·8-s + (0.664 + 0.747i)9-s + 0.448i·10-s + (−0.885 − 0.511i)11-s + (0.0806 + 0.790i)12-s + (0.432 − 0.249i)13-s + (−0.426 − 0.155i)14-s + (0.100 + 0.983i)15-s + (−0.212 + 0.367i)16-s + 1.44·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.315 + 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.315 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.301886 - 0.418399i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.301886 - 0.418399i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.58 + 0.709i)T \) |
| 7 | \( 1 + (-2.60 + 0.458i)T \) |
| good | 2 | \( 1 + (0.555 + 0.320i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.10 + 1.91i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.93 + 1.69i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.56 + 0.901i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.96T + 17T^{2} \) |
| 19 | \( 1 + 1.64iT - 19T^{2} \) |
| 23 | \( 1 + (-2.05 + 1.18i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.44 - 1.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (9.28 - 5.36i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.69T + 37T^{2} \) |
| 41 | \( 1 + (-0.455 - 0.788i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.96 - 3.39i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.123 - 0.213i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.87iT - 53T^{2} \) |
| 59 | \( 1 + (-5.39 - 9.33i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.22 + 0.709i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.99 - 6.91i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.1iT - 71T^{2} \) |
| 73 | \( 1 - 0.426iT - 73T^{2} \) |
| 79 | \( 1 + (-2.49 + 4.31i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.28 + 7.42i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 10.5T + 89T^{2} \) |
| 97 | \( 1 + (-6.30 - 3.63i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.60492015470906437391607494575, −13.39343325094277448605428053375, −12.27852019808283560307702155894, −11.12062996422734942582304972773, −10.39420090481096450931871626274, −8.685397411203037251136842964272, −7.69995477104068112952787164638, −5.61064527613848862096401696192, −4.81701026673481813818442483916, −1.07411590994453132919694279147,
3.74633195549341848004854403578, 5.30049107908158010805890312216, 7.13823817732467998956881865080, 8.043410538842777296167818821297, 9.683887959524031766078916776385, 10.85908503149562064855125354386, 11.79079881167626059958995202250, 12.85887203843664672889492568508, 14.51372544011439867315837924338, 15.46632794215105622995513474916