| L(s) = 1 | + (−1.22 − 0.707i)2-s + (1.22 − 2.12i)5-s + (−0.5 − 2.59i)7-s + 2.82i·8-s + (−3 + 1.73i)10-s + (1.22 − 0.707i)11-s + 5.19i·13-s + (−1.22 + 3.53i)14-s + (2.00 − 3.46i)16-s + (2.44 + 4.24i)17-s + (1.5 + 0.866i)19-s − 2·22-s + (−4.89 − 2.82i)23-s + (−0.499 − 0.866i)25-s + (3.67 − 6.36i)26-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.547 − 0.948i)5-s + (−0.188 − 0.981i)7-s + 0.999i·8-s + (−0.948 + 0.547i)10-s + (0.369 − 0.213i)11-s + 1.44i·13-s + (−0.327 + 0.944i)14-s + (0.500 − 0.866i)16-s + (0.594 + 1.02i)17-s + (0.344 + 0.198i)19-s − 0.426·22-s + (−1.02 − 0.589i)23-s + (−0.0999 − 0.173i)25-s + (0.720 − 1.24i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.154 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.154 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.463456 - 0.396560i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.463456 - 0.396560i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 2.59i)T \) |
| good | 2 | \( 1 + (1.22 + 0.707i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.22 + 2.12i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.22 + 0.707i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.19iT - 13T^{2} \) |
| 17 | \( 1 + (-2.44 - 4.24i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.5 - 0.866i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.89 + 2.82i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82iT - 29T^{2} \) |
| 31 | \( 1 + (-1.5 + 0.866i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 7.34T + 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 + (6.12 - 10.6i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.44 - 1.41i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.44 - 4.24i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 1.73i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.07iT - 71T^{2} \) |
| 73 | \( 1 + (-1.5 + 0.866i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 - 4.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.34T + 83T^{2} \) |
| 89 | \( 1 + (2.44 - 4.24i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10.3iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.42289299948592913838875454694, −13.71833266823928518282691732611, −12.36599318065012225574637784303, −11.10174018932143255756913055133, −9.930467654331260798011592151289, −9.195924563868058470989953106562, −7.988805816840212018400917385632, −6.11027014199763665193292161959, −4.37645112329284509211933291668, −1.47602106964119664343560575942,
3.05571607448660817101897693644, 5.68353393675272583983688301244, 6.97438849727951962623516571759, 8.164254192915018366618864657587, 9.480438361217717416520547736614, 10.22998312758584522794044048633, 11.85156143945318562276996762989, 13.03242997200722859272079281564, 14.36856280509368063611674502048, 15.43799228218262570241483772351