L(s) = 1 | + (−1.73 + 0.0795i)3-s + (−0.313 + 0.313i)5-s + (0.0745 + 0.278i)7-s + (2.98 − 0.275i)9-s + (0.150 − 0.563i)11-s + (−1.79 − 3.12i)13-s + (0.517 − 0.567i)15-s + (−2.79 + 4.84i)17-s + (6.79 − 1.81i)19-s + (−0.151 − 0.475i)21-s + (3.32 + 5.76i)23-s + 4.80i·25-s + (−5.14 + 0.713i)27-s + (3.57 − 2.06i)29-s + (1.03 + 1.03i)31-s + ⋯ |
L(s) = 1 | + (−0.998 + 0.0459i)3-s + (−0.140 + 0.140i)5-s + (0.0281 + 0.105i)7-s + (0.995 − 0.0917i)9-s + (0.0454 − 0.169i)11-s + (−0.496 − 0.867i)13-s + (0.133 − 0.146i)15-s + (−0.678 + 1.17i)17-s + (1.55 − 0.417i)19-s + (−0.0329 − 0.103i)21-s + (0.693 + 1.20i)23-s + 0.960i·25-s + (−0.990 + 0.137i)27-s + (0.664 − 0.383i)29-s + (0.186 + 0.186i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 - 0.568i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.822 - 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.966350 + 0.301325i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.966350 + 0.301325i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.73 - 0.0795i)T \) |
| 13 | \( 1 + (1.79 + 3.12i)T \) |
good | 5 | \( 1 + (0.313 - 0.313i)T - 5iT^{2} \) |
| 7 | \( 1 + (-0.0745 - 0.278i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.150 + 0.563i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.79 - 4.84i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.79 + 1.81i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.32 - 5.76i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.57 + 2.06i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.03 - 1.03i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.72 - 1.80i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-7.36 - 1.97i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-3.26 - 1.88i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.71 - 3.71i)T + 47iT^{2} \) |
| 53 | \( 1 + 3.64iT - 53T^{2} \) |
| 59 | \( 1 + (3.29 - 0.881i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5.25 - 9.10i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.29 - 8.55i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (3.98 + 14.8i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-3.52 + 3.52i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.10T + 79T^{2} \) |
| 83 | \( 1 + (8.23 - 8.23i)T - 83iT^{2} \) |
| 89 | \( 1 + (3.64 - 13.6i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.59 + 0.694i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87042920316927404284226755008, −9.926048860435383459979961300602, −9.156627906802507897198621390799, −7.80369711918104262103059096255, −7.16967479655136824448640356631, −6.00623558733980350430725899315, −5.34561364098185792405380759311, −4.27626061408199368904151714948, −2.98586266344475488677684892330, −1.13443936615048352088504231463,
0.804558355952109496583874236877, 2.54754776833843621201789562614, 4.29656047015356637675976648098, 4.88182657381645288152088366848, 6.01707836930933873220183905503, 6.97088810617152334494360944318, 7.58093722116243738280975195770, 8.984572069656447184437255508486, 9.714604654363428868563313236949, 10.63409551672202807248775934679