L(s) = 1 | + (0.5 + 0.866i)3-s + 3·5-s + (1 − 1.73i)7-s + (−0.499 + 0.866i)9-s + (3 + 5.19i)11-s + (−3.5 + 0.866i)13-s + (1.5 + 2.59i)15-s + (1.5 − 2.59i)17-s + (1 − 1.73i)19-s + 1.99·21-s + (−3 − 5.19i)23-s + 4·25-s − 0.999·27-s + (−1.5 − 2.59i)29-s + 4·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + 1.34·5-s + (0.377 − 0.654i)7-s + (−0.166 + 0.288i)9-s + (0.904 + 1.56i)11-s + (−0.970 + 0.240i)13-s + (0.387 + 0.670i)15-s + (0.363 − 0.630i)17-s + (0.229 − 0.397i)19-s + 0.436·21-s + (−0.625 − 1.08i)23-s + 0.800·25-s − 0.192·27-s + (−0.278 − 0.482i)29-s + 0.718·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.04469 + 0.533847i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04469 + 0.533847i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
good | 5 | \( 1 - 3T + 5T^{2} \) |
| 7 | \( 1 + (-1 + 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 - 6.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5 - 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 13T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (9 + 15.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7 - 12.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28640645628495921856398236351, −9.716887311965313403743232045366, −9.424154880918457675126148905083, −8.050007403862835446128800774610, −7.06523591181107522302721005016, −6.24720655627968707306856005175, −4.84463068511516099949861750980, −4.43442685339367085143955114496, −2.71126122125106236736270124767, −1.65603438242717813851675669160,
1.41009298425134880342500189697, 2.46571490286286266500513606038, 3.69194797962191056901510713480, 5.56980462981863390959685445144, 5.74553235032811395336553220431, 6.87411254106722560239472779653, 8.058424623744113190099056541143, 8.823672827469495560122281666167, 9.568997773695613993861017676474, 10.39630604373407081910258869264