| L(s) = 1 | + (0.766 − 1.32i)2-s + (−0.673 − 1.16i)4-s − 0.532·8-s + (−0.766 − 1.32i)13-s + (0.266 − 0.460i)16-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s − 2.34·26-s + (−0.939 + 1.62i)29-s + (0.939 + 1.62i)31-s + (−0.673 − 1.16i)32-s + (0.173 + 0.300i)41-s + 1.53·46-s + (0.173 − 0.300i)47-s + (−0.5 − 0.866i)49-s + (0.766 + 1.32i)50-s + ⋯ |
| L(s) = 1 | + (0.766 − 1.32i)2-s + (−0.673 − 1.16i)4-s − 0.532·8-s + (−0.766 − 1.32i)13-s + (0.266 − 0.460i)16-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s − 2.34·26-s + (−0.939 + 1.62i)29-s + (0.939 + 1.62i)31-s + (−0.673 − 1.16i)32-s + (0.173 + 0.300i)41-s + 1.53·46-s + (0.173 − 0.300i)47-s + (−0.5 − 0.866i)49-s + (0.766 + 1.32i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.311735294\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.311735294\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 2 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.87T + T^{2} \) |
| 73 | \( 1 + 1.87T + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71142561178208337640214812177, −10.04117846817129973168929527209, −9.181323178162689451948923220953, −7.928807088822871905274227282622, −7.01027298960761330497798652845, −5.43815098485986217608396666240, −4.98507722889181806500686992138, −3.57875957100403400498810604972, −2.92249441189409084744162805506, −1.51226274172792546987159182987,
2.34958866851873785127239021427, 4.13482446410873938224942989801, 4.59348575045802931286021228395, 5.86239636672206523508140271820, 6.48249028855134816428742298815, 7.41224670211874490601920601658, 8.098693657401805342250359967628, 9.190758642907637776843241152064, 10.04820021977491107690521593635, 11.28735616674712518041618037531