Properties

Label 2-621-207.11-c1-0-4
Degree $2$
Conductor $621$
Sign $0.550 - 0.834i$
Analytic cond. $4.95870$
Root an. cond. $2.22681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.412 − 0.0196i)2-s + (−1.82 + 0.173i)4-s + (−2.81 − 2.68i)5-s + (0.539 + 2.79i)7-s + (−1.56 + 0.224i)8-s + (−1.21 − 1.05i)10-s + (1.68 − 0.869i)11-s + (2.45 + 0.473i)13-s + (0.277 + 1.14i)14-s + (2.95 − 0.569i)16-s + (2.19 + 4.81i)17-s + (2.26 + 1.03i)19-s + (5.59 + 4.40i)20-s + (0.678 − 0.391i)22-s + (−1.47 + 4.56i)23-s + ⋯
L(s)  = 1  + (0.291 − 0.0138i)2-s + (−0.910 + 0.0869i)4-s + (−1.26 − 1.20i)5-s + (0.203 + 1.05i)7-s + (−0.553 + 0.0795i)8-s + (−0.383 − 0.332i)10-s + (0.508 − 0.262i)11-s + (0.681 + 0.131i)13-s + (0.0741 + 0.305i)14-s + (0.738 − 0.142i)16-s + (0.533 + 1.16i)17-s + (0.519 + 0.237i)19-s + (1.25 + 0.984i)20-s + (0.144 − 0.0834i)22-s + (−0.307 + 0.951i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(621\)    =    \(3^{3} \cdot 23\)
Sign: $0.550 - 0.834i$
Analytic conductor: \(4.95870\)
Root analytic conductor: \(2.22681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{621} (494, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 621,\ (\ :1/2),\ 0.550 - 0.834i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.835195 + 0.449796i\)
\(L(\frac12)\) \(\approx\) \(0.835195 + 0.449796i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + (1.47 - 4.56i)T \)
good2 \( 1 + (-0.412 + 0.0196i)T + (1.99 - 0.190i)T^{2} \)
5 \( 1 + (2.81 + 2.68i)T + (0.237 + 4.99i)T^{2} \)
7 \( 1 + (-0.539 - 2.79i)T + (-6.49 + 2.60i)T^{2} \)
11 \( 1 + (-1.68 + 0.869i)T + (6.38 - 8.96i)T^{2} \)
13 \( 1 + (-2.45 - 0.473i)T + (12.0 + 4.83i)T^{2} \)
17 \( 1 + (-2.19 - 4.81i)T + (-11.1 + 12.8i)T^{2} \)
19 \( 1 + (-2.26 - 1.03i)T + (12.4 + 14.3i)T^{2} \)
29 \( 1 + (0.293 - 3.07i)T + (-28.4 - 5.48i)T^{2} \)
31 \( 1 + (7.06 - 5.55i)T + (7.30 - 30.1i)T^{2} \)
37 \( 1 + (-1.48 + 5.06i)T + (-31.1 - 20.0i)T^{2} \)
41 \( 1 + (-3.86 + 4.05i)T + (-1.95 - 40.9i)T^{2} \)
43 \( 1 + (0.990 - 1.25i)T + (-10.1 - 41.7i)T^{2} \)
47 \( 1 + (-3.02 - 1.74i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-4.68 - 5.40i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (-0.385 + 2.00i)T + (-54.7 - 21.9i)T^{2} \)
61 \( 1 + (-5.11 + 12.7i)T + (-44.1 - 42.0i)T^{2} \)
67 \( 1 + (4.41 - 8.55i)T + (-38.8 - 54.5i)T^{2} \)
71 \( 1 + (-0.382 - 0.595i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (1.51 - 3.31i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (8.46 - 2.92i)T + (62.0 - 48.8i)T^{2} \)
83 \( 1 + (9.59 - 9.15i)T + (3.94 - 82.9i)T^{2} \)
89 \( 1 + (2.44 - 16.9i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (-17.4 - 4.23i)T + (86.2 + 44.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00890379792754307122796348174, −9.523781736422721433310916349527, −8.767681603606699886808783659131, −8.450970293346089337941483414469, −7.50552663512821178312816087745, −5.76032984388795916801302855572, −5.28397000450451278212032662915, −4.04177779396894783457277260830, −3.55708767877684102442196030283, −1.27829181802266275569567935592, 0.58462847657916639642798867875, 3.06479857442673213970505814632, 3.92979703916550056831896435567, 4.52688038530750017076480566349, 5.97613495461755816672974251132, 7.13906288347420124011797820703, 7.63057195615301861292013117420, 8.634355861790218900731661096263, 9.776321579387057189880090950542, 10.50131153247072289316095083210

Graph of the $Z$-function along the critical line