Properties

Label 2-60e2-5.4-c1-0-31
Degree $2$
Conductor $3600$
Sign $0.447 + 0.894i$
Analytic cond. $28.7461$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s − 2i·13-s + 2i·17-s − 4·19-s − 8i·23-s + 6·29-s − 8·31-s − 6i·37-s + 6·41-s − 4i·43-s + 7·49-s + 2i·53-s − 4·59-s − 2·61-s − 4i·67-s + ⋯
L(s)  = 1  + 1.20·11-s − 0.554i·13-s + 0.485i·17-s − 0.917·19-s − 1.66i·23-s + 1.11·29-s − 1.43·31-s − 0.986i·37-s + 0.937·41-s − 0.609i·43-s + 49-s + 0.274i·53-s − 0.520·59-s − 0.256·61-s − 0.488i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(28.7461\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3600} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3600,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.741035480\)
\(L(\frac12)\) \(\approx\) \(1.741035480\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 8iT - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 2iT - 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 10iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.649792764376536655361070287795, −7.68336374031468174486449227595, −6.84837289967856133824018793257, −6.25023235939032560187135724992, −5.51593197042013070059121188915, −4.38693585929860151054920179402, −3.93082385162742754470406013565, −2.79828932804449657071578923926, −1.82982338782789702157272157662, −0.57218158202813785377166073906, 1.14152182841781339007678171368, 2.08960821207701551930732862496, 3.27685745960515832228583320113, 4.04987425194175295140642404569, 4.79624636091922179793487598575, 5.78439418326447439891819911254, 6.49298552746777437529804781851, 7.14769381142733388377539407613, 7.901922215824919972883868166850, 8.880235549524611474629892471213

Graph of the $Z$-function along the critical line