Properties

Label 2-60e2-5.4-c1-0-19
Degree $2$
Conductor $3600$
Sign $0.894 - 0.447i$
Analytic cond. $28.7461$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·7-s + 4·11-s i·13-s + 4i·17-s + 19-s − 4i·23-s + 4·29-s + 5·31-s + 6i·37-s − 12·41-s − 5i·43-s − 8i·47-s + 6·49-s + 12i·53-s − 8·59-s + ⋯
L(s)  = 1  + 0.377i·7-s + 1.20·11-s − 0.277i·13-s + 0.970i·17-s + 0.229·19-s − 0.834i·23-s + 0.742·29-s + 0.898·31-s + 0.986i·37-s − 1.87·41-s − 0.762i·43-s − 1.16i·47-s + 0.857·49-s + 1.64i·53-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(28.7461\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3600} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3600,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.043869196\)
\(L(\frac12)\) \(\approx\) \(2.043869196\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - iT - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 - 4iT - 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 + 5iT - 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 12iT - 53T^{2} \)
59 \( 1 + 8T + 59T^{2} \)
61 \( 1 - 7T + 61T^{2} \)
67 \( 1 - 13iT - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 + 8iT - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 13iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.559329833718780737585645084983, −8.091134967259805296762080742884, −6.90930272337620533188762753234, −6.47840349335689484587310372512, −5.67605902909172650935027472209, −4.76283793191440230393048767946, −3.96169618313518412497596125228, −3.11997496295862470772801122941, −2.04605069918607462848912625190, −0.978429553220906821166989932321, 0.78241731799460590624972547120, 1.82632277824063517047850333270, 3.04505998799951721824141860619, 3.83167034023701742621503005026, 4.65734777800103942978237311443, 5.42225340581984716543995904422, 6.51902654231889450183513660349, 6.85126321159588902687012436004, 7.76455836642957990418026054521, 8.475228181135524051090930607721

Graph of the $Z$-function along the critical line