L(s) = 1 | + 4i·7-s − 2i·13-s + 8·19-s + 4·31-s − 10i·37-s + 8i·43-s − 9·49-s + 14·61-s + 16i·67-s + 10i·73-s − 4·79-s + 8·91-s + 14i·97-s + 20i·103-s − 2·109-s + ⋯ |
L(s) = 1 | + 1.51i·7-s − 0.554i·13-s + 1.83·19-s + 0.718·31-s − 1.64i·37-s + 1.21i·43-s − 1.28·49-s + 1.79·61-s + 1.95i·67-s + 1.17i·73-s − 0.450·79-s + 0.838·91-s + 1.42i·97-s + 1.97i·103-s − 0.191·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.881224702\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.881224702\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + 10iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 8iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 14T + 61T^{2} \) |
| 67 | \( 1 - 16iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.679854463838395859295167662628, −8.016459470359899075972712848442, −7.28101304657493281489624231555, −6.34501718621439964387021312327, −5.46019200520156091419249562695, −5.27436891853782060412211726730, −3.99678718250803551140047687598, −2.97711038721379082663734096602, −2.38245825924528526673071130489, −1.06556667006186634666569473452,
0.67429971704453545005553088813, 1.61928431382313917897956963915, 3.02275634312633459334619558189, 3.74246408996166194370495845381, 4.57373705258790200882689187094, 5.27390804844714373075996193123, 6.36598383165525711690532783933, 7.03241617073278871019508592207, 7.57586021832068742494217947493, 8.302179430291873342597403143302