L(s) = 1 | + (−0.453 + 0.891i)5-s + (−1.76 + 0.278i)13-s + (1.44 + 0.734i)17-s + (−0.587 − 0.809i)25-s + (−0.610 + 1.87i)29-s + (−0.309 − 1.95i)37-s + (−1.04 + 1.44i)41-s + i·49-s + (−0.550 + 0.280i)53-s + (−1.53 + 1.11i)61-s + (0.550 − 1.69i)65-s + (−0.142 + 0.896i)73-s + (−1.30 + 0.951i)85-s + (−0.253 + 0.183i)89-s + (0.278 − 0.142i)97-s + ⋯ |
L(s) = 1 | + (−0.453 + 0.891i)5-s + (−1.76 + 0.278i)13-s + (1.44 + 0.734i)17-s + (−0.587 − 0.809i)25-s + (−0.610 + 1.87i)29-s + (−0.309 − 1.95i)37-s + (−1.04 + 1.44i)41-s + i·49-s + (−0.550 + 0.280i)53-s + (−1.53 + 1.11i)61-s + (0.550 − 1.69i)65-s + (−0.142 + 0.896i)73-s + (−1.30 + 0.951i)85-s + (−0.253 + 0.183i)89-s + (0.278 − 0.142i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.675 - 0.737i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.675 - 0.737i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7027005338\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7027005338\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.453 - 0.891i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (1.76 - 0.278i)T + (0.951 - 0.309i)T^{2} \) |
| 17 | \( 1 + (-1.44 - 0.734i)T + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 29 | \( 1 + (0.610 - 1.87i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.309 + 1.95i)T + (-0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (1.04 - 1.44i)T + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (0.550 - 0.280i)T + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.142 - 0.896i)T + (-0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (0.253 - 0.183i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.278 + 0.142i)T + (0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.065872590420156110316806067095, −8.055120661587771696154837865583, −7.41368036722546551030132712995, −7.04069231982499765340247564723, −6.03100406563423765197737759734, −5.26384353912823794404353681942, −4.37568612840633541214864099643, −3.42633169575533134871332685543, −2.77738322998514131513629487752, −1.64030205045955792117926725812,
0.39373198153570822192600322678, 1.79984496134697849913559271708, 2.92913816115938371714763314059, 3.81013369426039084546643391126, 4.94982358032129091894977546307, 5.09172152690693227409554193800, 6.15161938155399734700563017889, 7.25444928210178426058412990594, 7.72676189778306841944401503158, 8.313036634374430151813807499282