L(s) = 1 | + (−1.22 + 1.22i)7-s − 4.24i·11-s + (−3.67 − 3.67i)13-s + (−1.73 − 1.73i)17-s + 5i·19-s + (−1.73 + 1.73i)23-s + 4.24·29-s − 31-s + (2.44 − 2.44i)37-s + 8.48i·41-s + (1.22 + 1.22i)43-s + (5.19 + 5.19i)47-s + 4i·49-s + (−6.92 + 6.92i)53-s + 12.7·59-s + ⋯ |
L(s) = 1 | + (−0.462 + 0.462i)7-s − 1.27i·11-s + (−1.01 − 1.01i)13-s + (−0.420 − 0.420i)17-s + 1.14i·19-s + (−0.361 + 0.361i)23-s + 0.787·29-s − 0.179·31-s + (0.402 − 0.402i)37-s + 1.32i·41-s + (0.186 + 0.186i)43-s + (0.757 + 0.757i)47-s + 0.571i·49-s + (−0.951 + 0.951i)53-s + 1.65·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8192701097\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8192701097\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.22 - 1.22i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.24iT - 11T^{2} \) |
| 13 | \( 1 + (3.67 + 3.67i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.73 + 1.73i)T + 17iT^{2} \) |
| 19 | \( 1 - 5iT - 19T^{2} \) |
| 23 | \( 1 + (1.73 - 1.73i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.24T + 29T^{2} \) |
| 31 | \( 1 + T + 31T^{2} \) |
| 37 | \( 1 + (-2.44 + 2.44i)T - 37iT^{2} \) |
| 41 | \( 1 - 8.48iT - 41T^{2} \) |
| 43 | \( 1 + (-1.22 - 1.22i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.19 - 5.19i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.92 - 6.92i)T - 53iT^{2} \) |
| 59 | \( 1 - 12.7T + 59T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 + (3.67 - 3.67i)T - 67iT^{2} \) |
| 71 | \( 1 - 8.48iT - 71T^{2} \) |
| 73 | \( 1 + (-2.44 - 2.44i)T + 73iT^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 + (1.73 - 1.73i)T - 83iT^{2} \) |
| 89 | \( 1 - 8.48T + 89T^{2} \) |
| 97 | \( 1 + (8.57 - 8.57i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.711551099985230361218716971526, −7.997203446723132876773537828066, −7.44210913926205108434209692176, −6.30215133462146722476269621147, −5.86016107490960807002687749494, −5.10503087976545631962719789781, −4.08437726024321589206627924797, −3.07558765993966612196336496705, −2.56466152726544929201166502995, −1.04928644689427286756683753151,
0.26549009970040889200333098656, 1.88610740943763290888904766175, 2.56152219494541457428512649476, 3.82573558280879248791473246384, 4.53199763606888414720546276612, 5.10466135218924981412236864354, 6.36547229758547821521914846460, 6.96293906478682188495936437551, 7.33989495702606131725121590584, 8.396467896335181044449052120214