L(s) = 1 | + (−0.587 − 0.809i)5-s + (0.5 + 1.53i)13-s + (−1.53 + 1.11i)17-s + (−0.309 + 0.951i)25-s + (1.53 + 1.11i)29-s + (0.190 + 0.587i)37-s + (−0.363 − 1.11i)41-s + 49-s + (0.951 + 0.690i)53-s + (−0.5 + 1.53i)61-s + (0.951 − 1.30i)65-s + (0.5 − 1.53i)73-s + (1.80 + 0.587i)85-s + (0.587 − 1.80i)89-s + (0.5 + 0.363i)97-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)5-s + (0.5 + 1.53i)13-s + (−1.53 + 1.11i)17-s + (−0.309 + 0.951i)25-s + (1.53 + 1.11i)29-s + (0.190 + 0.587i)37-s + (−0.363 − 1.11i)41-s + 49-s + (0.951 + 0.690i)53-s + (−0.5 + 1.53i)61-s + (0.951 − 1.30i)65-s + (0.5 − 1.53i)73-s + (1.80 + 0.587i)85-s + (0.587 − 1.80i)89-s + (0.5 + 0.363i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9769324037\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9769324037\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.587 + 0.809i)T \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.951 - 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.839761778738913035127276393164, −8.354574134813022895562884084135, −7.29148400599101576827203786956, −6.65825757890541619020609830782, −5.92636611596063433598161724285, −4.78463276196012089990374896051, −4.31976625278596687137688498718, −3.59299710231483935109292300067, −2.23338534528102247341114726660, −1.27740266124191497122101175838,
0.61624336774736375767605281258, 2.41696449527133089787412493554, 2.97967072308346940758627824423, 3.95768038881928640272438672718, 4.74394645691854679892025326167, 5.69434680655790254656780212086, 6.56124048560841812021505860694, 7.05421462757863328635071053467, 8.048404637446572872353621932820, 8.335736218022756517968239833606